girl-logo

Ask Questions

Math Solver

2x-y=7
Question
2x-y=7
Uh oh!
Function
x=\frac{7}{2}
Evaluate
2x-y=7
\text{To find the }x\text{-intercept,set }y\text{=0}
2x-0=7
Removing 0 doesn't change the value,so remove it from the expression
2x=7
Divide both sides
\frac{2x}{2}=\frac{7}{2}
Solution
x=\frac{7}{2}

\text{Find the }x\text{-intercept/zero}

Find the y-intercept

Find the slope

Solve the equation
x=\frac{7+y}{2}
Evaluate
2x-y=7
Move the expression to the right-hand side and change its sign
2x=7+y
Divide both sides
\frac{2x}{2}=\frac{7+y}{2}
Solution
x=\frac{7+y}{2}

\text{Solve for }x

\text{Solve for }y

Testing for symmetry
\textrm{Not symmetry with respect to the origin}
Evaluate
2x-y=7
\text{To test if the graph of }2x-y=7\text{ is symmetry with respect to the origin,substitute -x for x and -y for y}
2\left(-x\right)-\left(-y\right)=7
Evaluate
More Steps Hide Steps
Evaluate
2\left(-x\right)-\left(-y\right)
Multiply the numbers
-2x-\left(-y\right)
Rewrite the expression
-2x+y
-2x+y=7
Solution
\textrm{Not symmetry with respect to the origin}

Testing for symmetry about the origin

Testing for symmetry about the x-axis

Testing for symmetry about the y-axis

Rewrite the equation
r=\frac{7}{2\cos\left(\theta \right)-\sin\left(\theta \right)}
Evaluate
2x-y=7
\text{To convert the equation to polar coordinates,substitute }x\text{ for }r\cos\left(\theta \right)\text{ and }y\text{ for }r\sin\left(\theta \right)
2\cos\left(\theta \right)\times r-\sin\left(\theta \right)\times r=7
Factor the expression
\left(2\cos\left(\theta \right)-\sin\left(\theta \right)\right)r=7
Solution
r=\frac{7}{2\cos\left(\theta \right)-\sin\left(\theta \right)}

Rewrite in polar form

Rewrite in slope-intercept form

Find the first derivative
\frac{dy}{dx}=2
Calculate
2x-y=7
Take the derivative of both sides
\frac{d}{dx}\left(2x-y\right)=\frac{d}{dx}\left(7\right)
Calculate the derivative
More Steps Hide Steps
Evaluate
\frac{d}{dx}\left(2x-y\right)
Use differentiation rules
\frac{d}{dx}\left(2x\right)+\frac{d}{dx}\left(-y\right)
Evaluate the derivative
More Steps Hide Steps
Evaluate
\frac{d}{dx}\left(2x\right)
\text{Use differentiation rule }\frac{d}{dx}\left(cf\left(x\right)\right)=c\times\frac{d}{dx}(f(x))
2\times \frac{d}{dx}\left(x\right)
\text{Use }\frac{d}{dx} x^{n}=n x^{n-1}\text{ to find derivative}
2\times 1
Any expression multiplied by 1 remains the same
2
2+\frac{d}{dx}\left(-y\right)
Evaluate the derivative
More Steps Hide Steps
Evaluate
\frac{d}{dx}\left(-y\right)
Use differentiation rules
\frac{d}{dy}\left(-y\right)\times \frac{dy}{dx}
Evaluate the derivative
-\frac{dy}{dx}
2-\frac{dy}{dx}
2-\frac{dy}{dx}=\frac{d}{dx}\left(7\right)
Calculate the derivative
2-\frac{dy}{dx}=0
Move the constant to the right-hand side and change its sign
-\frac{dy}{dx}=0-2
Removing 0 doesn't change the value,so remove it from the expression
-\frac{dy}{dx}=-2
Solution
\frac{dy}{dx}=2

\text{Find the derivative with respect to }x

\text{Find the derivative with respect to }y

Find the second derivative
\frac{d^2y}{dx^2}=0
Calculate
2x-y=7
Take the derivative of both sides
\frac{d}{dx}\left(2x-y\right)=\frac{d}{dx}\left(7\right)
Calculate the derivative
More Steps Hide Steps
Evaluate
\frac{d}{dx}\left(2x-y\right)
Use differentiation rules
\frac{d}{dx}\left(2x\right)+\frac{d}{dx}\left(-y\right)
Evaluate the derivative
More Steps Hide Steps
Evaluate
\frac{d}{dx}\left(2x\right)
\text{Use differentiation rule }\frac{d}{dx}\left(cf\left(x\right)\right)=c\times\frac{d}{dx}(f(x))
2\times \frac{d}{dx}\left(x\right)
\text{Use }\frac{d}{dx} x^{n}=n x^{n-1}\text{ to find derivative}
2\times 1
Any expression multiplied by 1 remains the same
2
2+\frac{d}{dx}\left(-y\right)
Evaluate the derivative
More Steps Hide Steps
Evaluate
\frac{d}{dx}\left(-y\right)
Use differentiation rules
\frac{d}{dy}\left(-y\right)\times \frac{dy}{dx}
Evaluate the derivative
-\frac{dy}{dx}
2-\frac{dy}{dx}
2-\frac{dy}{dx}=\frac{d}{dx}\left(7\right)
Calculate the derivative
2-\frac{dy}{dx}=0
Move the constant to the right-hand side and change its sign
-\frac{dy}{dx}=0-2
Removing 0 doesn't change the value,so remove it from the expression
-\frac{dy}{dx}=-2
Change the signs on both sides of the equation
\frac{dy}{dx}=2
Take the derivative of both sides
\frac{d}{dx}\left(\frac{dy}{dx}\right)=\frac{d}{dx}\left(2\right)
Calculate the derivative
\frac{d^2y}{dx^2}=\frac{d}{dx}\left(2\right)
Solution
\frac{d^2y}{dx^2}=0

\text{Find the second derivative with respect to }x

\text{Find the second derivative with respect to }y

Graph

Still have questions?
Ask UpStudy online

  • 24/7 expert live tutors

  • Unlimited numbers of questions

  • Step-by-step explanations

📸 STUDY CAN BE A REAL STRUGGLE
Why Not UpStudy It?
Select your plan below
Premium

You can enjoy

  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to answer and
    solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic
  • Limited Solutions