Howell Brewer
03/13/2024 · High School

3. (2,0) Calcular o comprimento de arco da curva \( y=1-\ln (\operatorname{sen} x) \) do ponto onde \( x=\frac{\pi}{6} \) ao ponto onde \( x=\frac{\pi}{4} \)

UpStudy ThothAI Solution

Tutor-Verified Answer

Step-by-step Solution

Desculpe, mas parece que não é possível calcular essa integral diretamente. Vamos tentar simplificar a expressão antes de calcular a integral. Vamos simplificar a expressão \( \sqrt{1 + \left( -\frac{1}{\operatorname{sen} x} \cdot \operatorname{cos} x \right)^2} \) antes de calcular a integral. Simplify the expression by following steps: - step0: Solution: \(\sqrt{1+\left(-\frac{1}{\sin\left(x\right)}\times \cos\left(x\right)\right)^{2}}\) - step1: Multiply the terms: \(\sqrt{1+\left(-\frac{\cos\left(x\right)}{\sin\left(x\right)}\right)^{2}}\) - step2: Rewrite the expression: \(\sqrt{\frac{\sin^{2}\left(x\right)+\cos^{2}\left(x\right)}{\sin^{2}\left(x\right)}}\) - step3: Use the properties of radicals: \(\frac{\sqrt{\sin^{2}\left(x\right)+\cos^{2}\left(x\right)}}{\sqrt{\sin^{2}\left(x\right)}}\) - step4: Simplify the expression: \(\frac{1}{\sin\left(x\right)}\) - step5: Transform the expression: \(\csc\left(x\right)\) Vamos substituir a expressão simplificada na integral: \[ L = \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \csc(x) \, dx \] Agora, vamos calcular essa integral para encontrar o comprimento de arco da curva. Evaluate the integral by following steps: - step0: Evaluate using formulas and rules: \(\int_{\frac{\pi }{6}}^{\frac{\pi }{4}} \csc\left(x\right) dx\) - step1: Evaluate the integral: \(\int \csc\left(x\right) dx\) - step2: Evaluate the integral: \(-\ln{\left(\left|\csc\left(x\right)+\cot\left(x\right)\right|\right)}\) - step3: Return the limits: \(\left(-\ln{\left(\left|\csc\left(x\right)+\cot\left(x\right)\right|\right)}\right)\bigg |_{\frac{\pi }{6}}^{\frac{\pi }{4}}\) - step4: Calculate the value: \(\ln{\left(\frac{2+\sqrt{3}}{\sqrt{2}+1}\right)}\) O comprimento de arco da curva \( y=1-\ln (\operatorname{sen} x) \) do ponto onde \( x=\frac{\pi}{6} \) ao ponto onde \( x=\frac{\pi}{4} \) é \( \ln{(\\frac{2+\\sqrt{3}}{\\sqrt{2}+1})} \).

Quick Answer

O comprimento de arco da curva \( y=1-\ln (\operatorname{sen} x) \) entre \( x=\frac{\pi}{6} \) e \( x=\frac{\pi}{4} \) é \( \ln\left(\frac{2+\sqrt{3}}{\sqrt{2}+1}\right) \).
Answered by UpStudy AI and reviewed by a Professional Tutor
UpStudy ThothAI
Self-Developed and Ever-Improving
Thoth AI product is constantly being upgraded and optimized.
Covers All Major Subjects
Capable of handling homework in math, chemistry, biology, physics, and more.
Instant and Accurate
Provides immediate and precise solutions and guidance.
Try Now
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text

Enter your question here…

By image
Re-Upload
Uploaded Files
xxxx.png0%
Submit
📸 STUDY CAN BE A REAL STRUGGLE
Why Not UpStudy It?
Select your plan below
Premium

You can enjoy

  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to answer and
    solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic
  • Limited Solutions