Davison Ramos
07/23/2024 · Primary School

Evaluate using partial fraction \( I=\int_{1}^{\infty} \frac{x-1}{(x+1)\left(x^{2}+1\right)} d x \) A. \( \ln \frac{2}{\sqrt{2}} \) B. None of the options C. \( \ln \frac{2}{\sqrt{2}}+1 \) D. \( \ln \frac{1}{\sqrt{2}} \) E. \( \ln \sqrt{2} \)

UpStudy ThothAI Solution

Tutor-Verified Answer

Step-by-step Solution

To evaluate the integral \( I=\int_{1}^{\infty} \frac{x-1}{(x+1)\left(x^{2}+1\right)} d x \), we can use partial fraction decomposition to simplify the integral. First, let's decompose the fraction \( \frac{x-1}{(x+1)\left(x^{2}+1\right)} \) into partial fractions: \[ \frac{x-1}{(x+1)\left(x^{2}+1\right)} = \frac{A}{x+1} + \frac{Bx+C}{x^{2}+1} \] To find the values of \( A \), \( B \), and \( C \), we can equate the numerators and solve for the unknowns. \[ x-1 = A(x^{2}+1) + (Bx+C)(x+1) \] Expanding and equating coefficients, we get: \[ x-1 = Ax^{2} + A + Bx^{2} + Bx + Cx + C \] Comparing coefficients of like terms, we have: \[ A + B = 0 \] \[ A + C = -1 \] \[ B + C = 1 \] Solving this system of equations, we find: \[ A = 1, B = -1, C = 0 \] Therefore, the partial fraction decomposition is: \[ \frac{x-1}{(x+1)\left(x^{2}+1\right)} = \frac{1}{x+1} - \frac{x}{x^{2}+1} \] Now, we can integrate each term separately: \[ I = \int_{1}^{\infty} \left( \frac{1}{x+1} - \frac{x}{x^{2}+1} \right) dx \] \[ I = \int_{1}^{\infty} \frac{1}{x+1} dx - \int_{1}^{\infty} \frac{x}{x^{2}+1} dx \] Let's calculate each integral separately. Evaluate the integral by following steps: - step0: Evaluate using formulas and rules: \(\int_{1}^{+\infty} \frac{1}{x+1} dx\) - step1: Rewrite the improper integral: \(\lim _{a\rightarrow +\infty}\left(\int_{1}^{a} \frac{1}{x+1} dx\right)\) - step2: Evaluate the integral: \(\lim _{a\rightarrow +\infty}\left(\ln{\left(\frac{\left|a+1\right|}{2}\right)}\right)\) - step3: Rewrite the expression: \(\ln{\left(\lim _{a\rightarrow +\infty}\left(\frac{\left|a+1\right|}{2}\right)\right)}\) - step4: Calculate: \(\ln{\left(+\infty\right)}\) - step5: Calculate: \(+\infty\) - step6: Calculate: \(\textrm{Diverges}\) The first integral \( \int_{1}^{\infty} \frac{1}{x+1} dx \) diverges. Now, let's calculate the second integral \( \int_{1}^{\infty} \frac{x}{x^{2}+1} dx \). Evaluate the integral by following steps: - step0: Evaluate using substitution: \(\int_{1}^{+\infty} \frac{x}{x^{2}+1} dx\) - step1: Rewrite the improper integral: \(\lim _{a\rightarrow +\infty}\left(\int_{1}^{a} \frac{x}{x^{2}+1} dx\right)\) - step2: Evaluate the integral: \(\lim _{a\rightarrow +\infty}\left(\frac{1}{2}\ln{\left(a^{2}+1\right)}-\frac{\ln{\left(2\right)}}{2}\right)\) - step3: Rewrite the expression: \(\lim _{a\rightarrow +\infty}\left(\frac{1}{2}\ln{\left(a^{2}+1\right)}\right)+\lim _{a\rightarrow +\infty}\left(-\frac{\ln{\left(2\right)}}{2}\right)\) - step4: Calculate: \(\left(+\infty\right)-\frac{\ln{\left(2\right)}}{2}\) - step5: Calculate: \(+\infty\) - step6: Calculate: \(\textrm{Diverges}\)

Quick Answer

The integral \( I=\int_{1}^{\infty} \frac{x-1}{(x+1)\left(x^{2}+1\right)} d x \) diverges.
Answered by UpStudy AI and reviewed by a Professional Tutor
UpStudy ThothAI
Self-Developed and Ever-Improving
Thoth AI product is constantly being upgraded and optimized.
Covers All Major Subjects
Capable of handling homework in math, chemistry, biology, physics, and more.
Instant and Accurate
Provides immediate and precise solutions and guidance.
Try Now
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text

Enter your question here…

By image
Re-Upload
Uploaded Files
xxxx.png0%
Submit
📸 STUDY CAN BE A REAL STRUGGLE
Why Not UpStudy It?
Select your plan below
Premium

You can enjoy

  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to answer and
    solution
Basic
  • Limited Solutions