Robbins Flynn
01/04/2024 · Primary School

Resuelva la siguiente ecuación sin omitir ningún detalle. (por el método de variables separables. \[ \begin{array}{l}\frac{d y}{d x}=\frac{x^{4} y-2 x^{4}}{1-x^{5}} \\ \frac{d y}{d x}=\frac{x y^{2}-2 y^{2}}{x^{3}} \\ \frac{d y}{d x}=\frac{x y^{2}-3 y^{2}}{x^{2}}\end{array} \]

UpStudy ThothAI Solution

Tutor-Verified Answer

Step-by-step Solution

Vamos a resolver cada una de las ecuaciones diferenciales utilizando el método de variables separables. ### 1. Ecuación: \[ \frac{d y}{d x}=\frac{x^{4} y-2 x^{4}}{1-x^{5}} \] Primero, separamos las variables. Reescribimos la ecuación: \[ \frac{d y}{d x} = \frac{x^4 (y - 2)}{1 - x^5} \] Separando las variables, tenemos: \[ \frac{d y}{y - 2} = \frac{x^4}{1 - x^5} dx \] Ahora integramos ambos lados: \[ \int \frac{d y}{y - 2} = \int \frac{x^4}{1 - x^5} dx \] La integral del lado izquierdo es: \[ \ln |y - 2| + C_1 \] Para la integral del lado derecho, hacemos un cambio de variable. Sea \( u = 1 - x^5 \), entonces \( du = -5x^4 dx \) o \( dx = -\frac{du}{5x^4} \). Sustituyendo: \[ \int \frac{x^4}{1 - x^5} dx = -\frac{1}{5} \int \frac{1}{u} du = -\frac{1}{5} \ln |u| + C_2 = -\frac{1}{5} \ln |1 - x^5| + C_2 \] Igualando las integrales: \[ \ln |y - 2| = -\frac{1}{5} \ln |1 - x^5| + C \] Despejando \( y \): \[ |y - 2| = e^{C} |1 - x^5|^{-1/5} \] Finalmente, podemos escribir la solución general como: \[ y = 2 + C' |1 - x^5|^{-1/5} \] donde \( C' = e^{C} \). ### 2. Ecuación: \[ \frac{d y}{d x}=\frac{x y^{2}-2 y^{2}}{x^{3}} \] Separando las variables: \[ \frac{d y}{y^2 (x - 2)} = \frac{1}{x^3} dx \] Integrando ambos lados: \[ \int \frac{d y}{y^2} = \int \frac{1}{x^3} dx \] La integral del lado izquierdo es: \[ -\frac{1}{y} + C_1 \] La integral del lado derecho es: \[ -\frac{1}{2x^2} + C_2 \] Igualando: \[ -\frac{1}{y} = -\frac{1}{2x^2} + C \] Despejando \( y \): \[ y = \frac{1}{\frac{1}{2x^2} - C} \] ### 3. Ecuación: \[ \frac{d y}{d x}=\frac{x y^{2}-3 y^{2}}{x^{2}} \] Separando las variables: \[ \frac{d y}{y^2 (x - 3)} = \frac{1}{x^2} dx \] Integrando ambos lados: \[ \int \frac{d y}{y^2} = \int \frac{1}{x^2} dx \] La integral del lado izquierdo es: \[ -\frac{1}{y} + C_1 \] La integral del lado derecho es: \[ -\frac{1}{x} + C_2 \] Igualando: \[ -\frac{1}{y} = -\frac{1}{x} + C \] Despejando \( y \): \[ y = \frac{1}{\frac{1}{x} - C} \] ### Resumen de soluciones: 1. \( y = 2 + C' |1 - x^5|^{-1/5} \) 2. \( y = \frac{1}{\frac{1}{2x^2} - C} \) 3. \( y = \frac{1}{\frac{1}{x} - C} \) Estas son las soluciones generales para cada una de las ecuaciones diferenciales dadas.

Quick Answer

1. \( y = 2 + C' |1 - x^5|^{-1/5} \) 2. \( y = \frac{1}{\frac{1}{2x^2} - C} \) 3. \( y = \frac{1}{\frac{1}{x} - C} \)
Answered by UpStudy AI and reviewed by a Professional Tutor
UpStudy ThothAI
Self-Developed and Ever-Improving
Thoth AI product is constantly being upgraded and optimized.
Covers All Major Subjects
Capable of handling homework in math, chemistry, biology, physics, and more.
Instant and Accurate
Provides immediate and precise solutions and guidance.
Try Now
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text

Enter your question here…

By image
Re-Upload
Uploaded Files
xxxx.png0%
Submit
📸 STUDY CAN BE A REAL STRUGGLE
Why Not UpStudy It?
Select your plan below
Premium

You can enjoy

  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to answer and
    solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic
  • Limited Solutions