Boyd Rose
02/05/2024 · Senior High School

(2,0) Calcular o comprimento de arco da curva \( y=1-\ln (\operatorname{sen} x) \) do ponto onde \( x=\frac{7}{7} \) ao ponto onde \( x=\frac{\pi}{4} \)

UpStudy ThothAI Solution

Tutor-Verified Answer

Step-by-step Solution

Para calcular o comprimento de arco da curva \( y = 1 - \ln(\sin x) \) entre os pontos \( x = 1 \) (que é \( \frac{7}{7} \)) e \( x = \frac{\pi}{4} \), utilizamos a fórmula do comprimento de arco: \[ L = \int_{a}^{b} \sqrt{1 + \left( \frac{dy}{dx} \right)^2} \, dx \] Primeiro, precisamos encontrar a derivada \( \frac{dy}{dx} \). A função é: \[ y = 1 - \ln(\sin x) \] Calculando a derivada: \[ \frac{dy}{dx} = -\frac{1}{\sin x} \cdot \cos x = -\cot x \] Agora, substituímos \( \frac{dy}{dx} \) na fórmula do comprimento de arco: \[ L = \int_{1}^{\frac{\pi}{4}} \sqrt{1 + \left(-\cot x\right)^2} \, dx \] Sabemos que \( \cot^2 x = \frac{\cos^2 x}{\sin^2 x} \), então: \[ 1 + \cot^2 x = 1 + \frac{\cos^2 x}{\sin^2 x} = \frac{\sin^2 x + \cos^2 x}{\sin^2 x} = \frac{1}{\sin^2 x} \] Portanto, temos: \[ \sqrt{1 + \cot^2 x} = \sqrt{\frac{1}{\sin^2 x}} = \frac{1}{\sin x} \] Assim, a integral do comprimento de arco se torna: \[ L = \int_{1}^{\frac{\pi}{4}} \frac{1}{\sin x} \, dx \] A integral de \( \frac{1}{\sin x} \) é \( -\ln(\cot x + \csc x) \). Portanto, calculamos: \[ L = \left[-\ln(\cot x + \csc x)\right]_{1}^{\frac{\pi}{4}} \] Calculando os limites: 1. Para \( x = \frac{\pi}{4} \): \[ \cot\left(\frac{\pi}{4}\right) = 1 \quad \text{e} \quad \csc\left(\frac{\pi}{4}\right) = \sqrt{2} \] Portanto: \[ \cot\left(\frac{\pi}{4}\right) + \csc\left(\frac{\pi}{4}\right) = 1 + \sqrt{2} \] 2. Para \( x = 1 \): \[ \cot(1) = \frac{\cos(1)}{\sin(1)} \quad \text{e} \quad \csc(1) = \frac{1}{\sin(1)} \] Assim: \[ \cot(1) + \csc(1) = \frac{\cos(1)}{\sin(1)} + \frac{1}{\sin(1)} = \frac{\cos(1) + 1}{\sin(1)} \] Portanto, a integral se torna: \[ L = -\ln(1 + \sqrt{2}) + \ln\left(\frac{\cos(1) + 1}{\sin(1)}\right) \] Simplificando, temos: \[ L = \ln\left(\frac{\cos(1) + 1}{\sin(1)(1 + \sqrt{2})}\right) \] Assim, o comprimento de arco da curva \( y = 1 - \ln(\sin x) \) do ponto \( x = 1 \) ao ponto \( x = \frac{\pi}{4} \) é: \[ L = \ln\left(\frac{\cos(1) + 1}{\sin(1)(1 + \sqrt{2})}\right) \]

Quick Answer

O comprimento de arco da curva \( y = 1 - \ln(\sin x) \) entre \( x = 1 \) e \( x = \frac{\pi}{4} \) é \( L = \ln\left(\frac{\cos(1) + 1}{\sin(1)(1 + \sqrt{2})}\right) \).
Answered by UpStudy AI and reviewed by a Professional Tutor
UpStudy ThothAI
Self-Developed and Ever-Improving
Thoth AI product is constantly being upgraded and optimized.
Covers All Major Subjects
Capable of handling homework in math, chemistry, biology, physics, and more.
Instant and Accurate
Provides immediate and precise solutions and guidance.
Try Now
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text

Enter your question here…

By image
Re-Upload
Uploaded Files
xxxx.png0%
Submit
📸 STUDY CAN BE A REAL STRUGGLE
Why Not UpStudy It?
Select your plan below
Premium

You can enjoy

  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to answer and
    solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic
  • Limited Solutions