Norris Griffiths
11/13/2023 · Elementary School

Sean las siguientes Ecuaciones Diferenciales Ordinarias (EDO) con valor inicial \[ \left(2 y^{2}+3 \cos (3 x)\right) d x+\left(4 x y-6 y^{2}\right) d y=0, \quad y(0)=-1 \]

UpStudy ThothAI Solution

Tutor-Verified Answer

Step-by-step Solution

Para resolver la ecuación diferencial ordinaria (EDO) dada: \[ (2 y^{2}+3 \cos (3 x)) d x + (4 x y - 6 y^{2}) d y = 0, \] primero reescribimos la ecuación en la forma estándar: \[ \frac{dy}{dx} = -\frac{2 y^{2} + 3 \cos(3x)}{4xy - 6y^{2}}. \] Ahora, intentamos verificar si la ecuación es exacta. Para que una EDO de la forma \(M(x, y)dx + N(x, y)dy = 0\) sea exacta, debe cumplirse que: \[ \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}. \] Donde: - \(M(x, y) = 2y^2 + 3\cos(3x)\) - \(N(x, y) = 4xy - 6y^2\) Calculamos las derivadas parciales: 1. \(\frac{\partial M}{\partial y} = 4y\) 2. \(\frac{\partial N}{\partial x} = 4y\) Dado que \(\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}\), la ecuación es exacta. Ahora, buscamos una función \(F(x, y)\) tal que: \[ \frac{\partial F}{\partial x} = M(x, y) \quad \text{y} \quad \frac{\partial F}{\partial y} = N(x, y). \] Integrando \(M(x, y)\) con respecto a \(x\): \[ F(x, y) = \int (2y^2 + 3\cos(3x)) \, dx = 2y^2x + \int 3\cos(3x) \, dx = 2y^2x + \sin(3x) + g(y), \] donde \(g(y)\) es una función de \(y\) que se determinará. Ahora, derivamos \(F(x, y)\) con respecto a \(y\): \[ \frac{\partial F}{\partial y} = 4xy + g'(y). \] Igualamos esto a \(N(x, y)\): \[ 4xy + g'(y) = 4xy - 6y^2. \] De aquí, deducimos que: \[ g'(y) = -6y^2. \] Integrando \(g'(y)\): \[ g(y) = -2y^3 + C, \] donde \(C\) es una constante de integración. Por lo tanto, la función \(F(x, y)\) es: \[ F(x, y) = 2y^2x + \sin(3x) - 2y^3 + C. \] La solución de la EDO es: \[ F(x, y) = C, \] lo que implica: \[ 2y^2x + \sin(3x) - 2y^3 = C. \] Ahora, aplicamos la condición inicial \(y(0) = -1\): \[ 2(-1)^2(0) + \sin(3 \cdot 0) - 2(-1)^3 = C \implies 0 + 0 + 2 = C \implies C = 2. \] Finalmente, la solución de la EDO con la condición inicial es: \[ 2y^2x + \sin(3x) - 2y^3 = 2. \]

Quick Answer

La solución de la EDO con la condición inicial \(y(0) = -1\) es \(2y^2x + \sin(3x) - 2y^3 = 2\).
Answered by UpStudy AI and reviewed by a Professional Tutor
UpStudy ThothAI
Self-Developed and Ever-Improving
Thoth AI product is constantly being upgraded and optimized.
Covers All Major Subjects
Capable of handling homework in math, chemistry, biology, physics, and more.
Instant and Accurate
Provides immediate and precise solutions and guidance.
Try Now
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text

Enter your question here…

By image
Re-Upload
Uploaded Files
xxxx.png0%
Submit
📸 STUDY CAN BE A REAL STRUGGLE
Why Not UpStudy It?
Select your plan below
Premium

You can enjoy

  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to answer and
    solution
Basic
  • Limited Solutions