Logan Bolton
09/09/2024 · Middle School

\( \operatorname { Lim } _ { t \rightarrow \infty } 2 \int _ { 0 } ^ { t } \frac { 1 } { n ( n + 1 ) } \)

UpStudy ThothAI Solution

Tutor-Verified Answer

Step-by-step Solution

Para resolver el límite \( \operatorname{Lim}_{t \rightarrow \infty} 2 \int_{0}^{t} \frac{1}{n(n+1)} \, dn \), primero necesitamos calcular la integral \( \int \frac{1}{n(n+1)} \, dn \). Podemos descomponer la fracción usando fracciones parciales: \[ \frac{1}{n(n+1)} = \frac{A}{n} + \frac{B}{n+1} \] Multiplicando ambos lados por \( n(n+1) \) y resolviendo para \( A \) y \( B \): \[ 1 = A(n+1) + Bn \] Si tomamos \( n = 0 \): \[ 1 = A(0 + 1) \implies A = 1 \] Si tomamos \( n = -1 \): \[ 1 = B(-1) \implies B = -1 \] Por lo tanto, podemos escribir: \[ \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1} \] Ahora, integramos: \[ \int \frac{1}{n(n+1)} \, dn = \int \left( \frac{1}{n} - \frac{1}{n+1} \right) \, dn = \ln |n| - \ln |n+1| + C = \ln \left| \frac{n}{n+1} \right| + C \] Ahora evaluamos la integral definida: \[ \int_{0}^{t} \frac{1}{n(n+1)} \, dn = \left[ \ln \left| \frac{n}{n+1} \right| \right]_{0}^{t} \] Evaluamos en los límites: 1. Para \( n = t \): \[ \ln \left| \frac{t}{t+1} \right| \] 2. Para \( n = 0 \): \[ \lim_{n \to 0} \ln \left| \frac{n}{n+1} \right| = \ln(0) \text{ (indeterminado, pero se puede analizar el límite)} \] Sin embargo, al evaluar el límite cuando \( n \) se aproxima a 0, notamos que: \[ \frac{n}{n+1} \to 0 \implies \ln \left| \frac{n}{n+1} \right| \to -\infty \] Por lo tanto, la integral se comporta de la siguiente manera: \[ \int_{0}^{t} \frac{1}{n(n+1)} \, dn = \ln \left| \frac{t}{t+1} \right| - \lim_{n \to 0} \ln \left| \frac{n}{n+1} \right| \to \ln \left| \frac{t}{t+1} \right| + \infty \] Esto implica que la integral diverge a \( \infty \) cuando \( t \to \infty \). Finalmente, evaluamos el límite: \[ \operatorname{Lim}_{t \rightarrow \infty} 2 \int_{0}^{t} \frac{1}{n(n+1)} \, dn = \operatorname{Lim}_{t \rightarrow \infty} 2 \left( \ln \left| \frac{t}{t+1} \right| + \infty \right) = \infty \] Por lo tanto, el resultado es: \[ \boxed{\infty} \]

Quick Answer

El límite es \( \infty \).
Answered by UpStudy AI and reviewed by a Professional Tutor
UpStudy ThothAI
Self-Developed and Ever-Improving
Thoth AI product is constantly being upgraded and optimized.
Covers All Major Subjects
Capable of handling homework in math, chemistry, biology, physics, and more.
Instant and Accurate
Provides immediate and precise solutions and guidance.
Try Now
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text

Enter your question here…

By image
Re-Upload
Uploaded Files
xxxx.png0%
Submit
📸 STUDY CAN BE A REAL STRUGGLE
Why Not UpStudy It?
Select your plan below
Premium

You can enjoy

  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to answer and
    solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic
  • Limited Solutions