girl-logo

Ask Questions

Question

Morgan Martin

04/15/2023 · Junior High School

The table represents an exponential function. 

What is the multiplicative rate of change of the function?

\(\frac { 1} { 5} \)

 

\(\frac { 2} { 5} \) 

 

 

Answer
expertExpert-Verified Answer

Ortega Weber
Supertutor
4.0 (26votes)

\(\frac { 1} { 5} \)

Solution

UpStudy Free Solution:
To find the multiplicative rate of change of the exponential function, we need to determine the ratio between consecutive \(y\)-values.
Given the table:
\[\begin{array} { | c| c| } \ hlinex & y \\ \hline 1 & 2 \\ 2 & \frac { 2} { 5} \\ 3& \frac { 2} { 25} \\ 4 & \frac { 2} { 125} \\ \hline \end{array} \]
Let's calculate the ratio between consecutive \(y\)-values:
\[\frac { \frac { 2} { 5} } { 2} = \frac { 2} { 5} \times \frac { 1} { 2} = \frac { 1} { 5} \]
\[\frac { \frac { 2} { 25} } { \frac { 2} { 5} } = \frac { 2} { 25} \times \frac { 5} { 2} = \frac { 1} { 5} \]
\[\frac { \frac { 2} { 125} } { \frac { 2} { 25} } = \frac { 2} { 125} \times \frac { 25} { 2} = \frac { 1} { 5} \]
The multiplicative rate of change is consistently \(\frac { 1} { 5} \).
Therefore, the correct answer is:
\(\frac { 1} { 5} \)


Supplemental Knowledge:


Exponential functions are mathematical expressions in which a constant base is raised to a variable exponent. The general form of an exponential function is \(f( x) = a \cdot b^ x\), where \(a\) is the initial value and \(b\) is the base, representing the multiplicative rate of change.
The multiplicative rate of change, or growth factor, in an exponential function indicates how much the function's value changes for each unit increase in \(x\). If the base \(b > 1\), the function represents exponential growth; if \(0 < b < 1\), it represents exponential decay.
To determine the multiplicative rate of change from a table representing an exponential function, you can calculate the ratio between consecutive outputs (function values).


With UpStudy by your side, every academic challenge becomes an opportunity for personal and intellectual development!

Still have questions?
Ask UpStudy online

  • 24/7 expert live tutors

  • Unlimited numbers of questions

  • Step-by-step explanations

📸 STUDY CAN BE A REAL STRUGGLE
Why Not UpStudy It?
Select your plan below
Premium

You can enjoy

  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to answer and
    solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic
  • Limited Solutions