girl-logo

Ask Questions

Question

Vaughan Reyes

05/10/2024 · High School

Directions: Simplify the expressions

1.\(25- ( \sqrt { 16} - 1) ( 3- 9) ^ { 2} \)

2.\(\left | 5- 2( 9) \right | + 9^ { 2} \div 3\)

3.\(\frac { 2^ { 5} - 4\times 3^ { 3} } { 7+ ( 1- \sqrt { 100) }  } \)

4.\(\frac { ( \sqrt { 225} - 11) \times 12 } { - 12- ( - 8- 6^ { 2} ) } - \left | - 3 \right | \)

5.\(\frac { 3} { 2} [ ( 58- 10^ { 2} ) \div ( \sqrt { 16} \div 3) ] \)

6.\(\frac { 56\div ( 7- 9) ^ { 3} - 25 } { 23- 5\times 4 } \)

Directions:Evaluate each expression given the replacement values.

7.\(a^ { 2} + 2( b- 6) - 17\)(if a=-7 and b=2)

8.\(\frac { 8x- 2y} { 10xy} \)(if x=4 and y=-7)

Answer
expertExpert-Verified Answer

Kelly Harmon
Specialized Tutor
4.0 (13votes)

1.-83  2.40  3.38  4.\(- \frac { 3} { 2} \)  5.-47.25  6.\(- \frac { 32} { 3} \)  7.24  8.\(- \frac { 23} { 140} \)

Solution

Sure, let's simplify each expression step by step.

 

  1. Simplify:
    \[25 - ( \sqrt { 16} - 1) ( 3 - 9) ^ 2\]
    Solution:
    \[\sqrt { 16} = 4\]
    \[3 - 9 = - 6\]
    \[( - 6) ^ 2 = 36\]
    \[25 - ( 4 - 1) ( 36) = 25 - 3 \times 36 = 25 - 108 = - 83\]
    Answer: \(- 83\)
  2. Simplify:
    \[\left | 5 - 2( 9) \right | + \frac { 9^ 2} { 3} \]
    Solution:
    \[2( 9) = 18\]
    \[5 - 18 = - 13\]
    \[\left | - 13 \right | = 13\]
    \[9^ 2 = 81\]
    \[\frac { 81} { 3} = 27\]
    \[13 + 27 = 40\]
    Answer: \(40\)
  3. Simplify:
    \[\frac { 2^ 5 - 4 \times 3^ 3} { 7 + ( 1 - \sqrt { 100} ) } \]
    Solution:
    \[2^ 5 = 32\]
    \[3^ 3 = 27\]
    \[4 \times 27 = 108\]
    \[32 - 108 = - 76\]
    \[\sqrt { 100} = 10\]
    \[1 - 10 = - 9\]
    \[7 + ( - 9) = - 2\]
    \[\frac { - 76} { - 2} = 38\]
    Answer: \(38\)
  4. Simplify:
    \[\frac { ( \sqrt { 225} - 11) \times 12} { - 12 - ( - 8 - 6^ 2) } - \left | - 3 \right | \]
    Solution:
    \[\sqrt { 225} = 15\]
    \[15 - 11 = 4\]
    \[4 \times 12 = 48\]
    \[6^ 2 = 36\]
    \[- 8 - 36 = - 44\]
    \[- 12 - ( - 44) = - 12 + 44 = 32\]
    \[\frac { 48} { 32} = \frac { 3} { 2} \]
    \[\left | - 3 \right | = 3\]
    \[\frac { 3} { 2} - 3 = \frac { 3} { 2} - \frac { 6} { 2} = - \frac { 3} { 2} \]
    Answer: \(- \frac { 3} { 2} \)
  5. Simplify:
    \[\frac { 3} { 2} \left [ \frac { 58 - 10^ 2} { \sqrt { 16} \div 3} \right ] \]
    Solution:
    \[10^ 2 = 100\]
    \[58 - 100 = - 42\]
    \[\sqrt { 16} = 4\]
    \[4 \div 3 = \frac { 4} { 3} \]
    \[\frac { - 42} { \frac { 4} { 3} } = - 42 \times \frac { 3} { 4} = - \frac { 126} { 4} = - 31.5\]
    \[\frac { 3} { 2} \times - 31.5 = - 47.25\]
    Answer: \(- 47.25\)
  6. Simplify:
    \[\frac { 56 \div ( 7 - 9) ^ 3 - 25} { 23 - 5 \times 4} \]
    Solution:
    \[7 - 9 = - 2\]
    \[( - 2) ^ 3 = - 8\]
    \[56 \div - 8 = - 7\]
    \[- 7 - 25 = - 32\]
    \[5 \times 4 = 20\]
    \[23 - 20 = 3\]
    \[\frac { - 32} { 3} = - \frac { 32} { 3} \]
    Answer: \(- \frac { 32} { 3} \)
  7. Evaluate given \(a = - 7\) and \(b = 2\):
    \[a^ 2 + 2( b - 6) - 17\]
    Solution:
    \[( - 7) ^ 2 = 49\]
    \[2( 2 - 6) = 2( - 4) = - 8\]
    \[49 - 8 - 17 = 24\]
    Answer: \(24\)
  8. Evaluate given \(x = 4\) and \(y = - 7\):
    \[\frac { 8x - 2y} { 10xy} \]
    Solution:
    \[8( 4) = 32\]
    \[- 2( - 7) = 14\]
    \[32 + 14 = 46\]
    \[10( 4) ( - 7) = - 280\]
    \[\frac { 46} { - 280} = - \frac { 23} { 140} \]
    Answer: \(- \frac { 23} { 140} \)

 

Supplemental Knowledge

Simplifying algebraic expressions involves combining like terms, using the order of operations (PEMDAS/BODMAS), and applying arithmetic rules. Evaluating expressions requires substituting given values for variables and then simplifying.

  1. Order of Operations (PEMDAS/BODMAS):
    • Parentheses/Brackets
    • Exponents/Orders
    • Multiplication and Division (from left to right)
    • Addition and Subtraction (from left to right)
  2. Absolute Value:
    • The absolute value of a number is its distance from zero on the number line, always non-negative.
  3. Substitution:
    • Replacing variables with given numerical values to evaluate an expression.

 

Knowledge in Action

Learning to simplify and evaluate expressions is fundamental for numerous real-life applications, from budget calculations and distance measurements in physics, to altering recipes in cooking.

 

For more help with algebraic simplifications or evaluations check out UpStudy’s Algebra calculator! This tool can assist you in mastering these concepts by providing step-by-step solutions tailored to your learning needs.
If you have any more questions or need further assistance feel free to ask!

Still have questions?
Ask UpStudy online

  • 24/7 expert live tutors

  • Unlimited numbers of questions

  • Step-by-step explanations

📸 STUDY CAN BE A REAL STRUGGLE
Why Not UpStudy It?
Select your plan below
Premium

You can enjoy

  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to answer and
    solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic
  • Limited Solutions