Hill Howell
03/17/2024 · Primary School

(4) \( \operatorname{sen}\left(30^{\circ}+p\right)-\cos \left(60^{\circ}+p\right)=\sqrt{3} \operatorname{sen} \beta \) (5) \( \operatorname{sen}^{3} x+\cos ^{3} x=(1-\operatorname{sen} x \cos x)(\operatorname{sen} x+\cos x) \) Demostración

UpStudy ThothAI Solution

Tutor-Verified Answer

Step-by-step Solution

Vamos a demostrar las dos ecuaciones que has proporcionado. ### Ecuación (4) La ecuación es: \[ \operatorname{sen}\left(30^{\circ}+p\right)-\cos \left(60^{\circ}+p\right)=\sqrt{3} \operatorname{sen} \beta \] Primero, recordemos las identidades trigonométricas: \[ \operatorname{sen}(30^{\circ}) = \frac{1}{2}, \quad \cos(60^{\circ}) = \frac{1}{2} \] Usando la fórmula de la suma de ángulos para el seno y el coseno, tenemos: \[ \operatorname{sen}(30^{\circ} + p) = \operatorname{sen}(30^{\circ})\operatorname{cos}(p) + \operatorname{cos}(30^{\circ})\operatorname{sen}(p) = \frac{1}{2}\operatorname{cos}(p) + \frac{\sqrt{3}}{2}\operatorname{sen}(p) \] \[ \cos(60^{\circ} + p) = \cos(60^{\circ})\operatorname{cos}(p) - \operatorname{sen}(60^{\circ})\operatorname{sen}(p) = \frac{1}{2}\operatorname{cos}(p) - \frac{\sqrt{3}}{2}\operatorname{sen}(p) \] Sustituyendo estas expresiones en la ecuación original: \[ \left(\frac{1}{2}\operatorname{cos}(p) + \frac{\sqrt{3}}{2}\operatorname{sen}(p)\right) - \left(\frac{1}{2}\operatorname{cos}(p) - \frac{\sqrt{3}}{2}\operatorname{sen}(p)\right) = \sqrt{3} \operatorname{sen} \beta \] Simplificando el lado izquierdo: \[ \frac{1}{2}\operatorname{cos}(p) + \frac{\sqrt{3}}{2}\operatorname{sen}(p) - \frac{1}{2}\operatorname{cos}(p) + \frac{\sqrt{3}}{2}\operatorname{sen}(p) = \sqrt{3} \operatorname{sen} \beta \] Esto se reduce a: \[ \sqrt{3} \operatorname{sen}(p) = \sqrt{3} \operatorname{sen} \beta \] Dividiendo ambos lados por \(\sqrt{3}\) (asumiendo que \(\sqrt{3} \neq 0\)): \[ \operatorname{sen}(p) = \operatorname{sen} \beta \] Esto implica que \(p = \beta + k \cdot 360^{\circ}\) o \(p = 180^{\circ} - \beta + k \cdot 360^{\circ}\) para algún entero \(k\). ### Ecuación (5) La ecuación es: \[ \operatorname{sen}^{3} x+\cos ^{3} x=(1-\operatorname{sen} x \cos x)(\operatorname{sen} x+\cos x) \] Usamos la identidad de suma de cubos: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \] Donde \(a = \operatorname{sen} x\) y \(b = \cos x\): \[ \operatorname{sen}^{3} x + \cos^{3} x = (\operatorname{sen} x + \cos x)(\operatorname{sen}^{2} x - \operatorname{sen} x \cos x + \cos^{2} x) \] Sabemos que \(\operatorname{sen}^{2} x + \cos^{2} x = 1\), así que: \[ \operatorname{sen}^{2} x - \operatorname{sen} x \cos x + \cos^{2} x = 1 - \operatorname{sen} x \cos x \] Por lo tanto, podemos reescribir la expresión: \[ \operatorname{sen}^{3} x + \cos^{3} x = (\operatorname{sen} x + \cos x)(1 - \operatorname{sen} x \cos x) \] Esto coincide con el lado derecho de la ecuación original, por lo que hemos demostrado que: \[ \operatorname{sen}^{3} x + \

Quick Answer

For equation (4), we have shown that \(\operatorname{sen}(p) = \operatorname{sen} \beta\), implying \(p = \beta + k \cdot 360^{\circ}\) or \(p = 180^{\circ} - \beta + k \cdot 360^{\circ}\) for some integer \(k\). For equation (5), we have demonstrated that \(\operatorname{sen}^{3} x + \cos^{3} x = (\operatorname{sen} x + \cos x)(1 - \operatorname{sen} x \cos x)\), which matches the right side of the original equation.
Answered by UpStudy AI and reviewed by a Professional Tutor
UpStudy ThothAI
Self-Developed and Ever-Improving
Thoth AI product is constantly being upgraded and optimized.
Covers All Major Subjects
Capable of handling homework in math, chemistry, biology, physics, and more.
Instant and Accurate
Provides immediate and precise solutions and guidance.
Try Now
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text

Enter your question here…

By image
Re-Upload
Uploaded Files
xxxx.png0%
Submit
📸 STUDY CAN BE A REAL STRUGGLE
Why Not UpStudy It?
Select your plan below
Premium

You can enjoy

  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to answer and
    solution
Basic
  • Limited Solutions