Valdez Turnbull
08/09/2023 · Primary School

2. Determine the following limits (if they exist): (2 marks each) \( \begin{array}{ll}\text { a) } \lim _{x \rightarrow 2} \frac{3 x^{2}-4 x}{3-x} & \text { f) } \lim _{y \rightarrow 1} \frac{y+1}{y-1} \\ \text { b) } \lim _{x \rightarrow 4} \frac{x^{2}-x-12}{x-4} & \text { g) } \lim _{h \rightarrow 0} \frac{3 h+h^{2}}{h} \\ \text { c) } \lim _{x \rightarrow 2}\left(3 x+\frac{1}{3 x}\right) & \text { h) } \lim _{h \rightarrow 1} \frac{h^{3}-1}{h-1} \\ \text { d) } \lim _{x \rightarrow 0} \frac{1}{x} & \text { i) } \lim _{x \rightarrow 3} \frac{\sqrt{x}-\sqrt{3}}{x-3} \\ \text { e) } \lim _{y \rightarrow 1} \frac{y-1}{y+1} & \end{array} \)

UpStudy ThothAI Solution

Tutor-Verified Answer

Step-by-step Solution

Let's evaluate each limit one by one. ### a) \( \lim _{x \rightarrow 2} \frac{3 x^{2}-4 x}{3-x} \) First, substitute \( x = 2 \): \[ \frac{3(2)^2 - 4(2)}{3 - 2} = \frac{3(4) - 8}{1} = \frac{12 - 8}{1} = \frac{4}{1} = 4 \] **Limit: 4** ### b) \( \lim _{x \rightarrow 4} \frac{x^{2}-x-12}{x-4} \) Factor the numerator: \[ x^2 - x - 12 = (x - 4)(x + 3) \] Thus, \[ \frac{(x - 4)(x + 3)}{x - 4} = x + 3 \quad \text{for } x \neq 4 \] Now substitute \( x = 4 \): \[ 4 + 3 = 7 \] **Limit: 7** ### c) \( \lim _{x \rightarrow 2}\left(3 x+\frac{1}{3 x}\right) \) Substituting \( x = 2 \): \[ 3(2) + \frac{1}{3(2)} = 6 + \frac{1}{6} = 6 + 0.1667 = 6.1667 \approx \frac{37}{6} \] **Limit: \( \frac{37}{6} \)** ### d) \( \lim _{x \rightarrow 0} \frac{1}{x} \) As \( x \) approaches 0, \( \frac{1}{x} \) approaches \( +\infty \) from the right and \( -\infty \) from the left. Therefore, the limit does not exist. **Limit: Does not exist** ### e) \( \lim _{y \rightarrow 1} \frac{y-1}{y+1} \) Substituting \( y = 1 \): \[ \frac{1 - 1}{1 + 1} = \frac{0}{2} = 0 \] **Limit: 0** ### f) \( \lim _{y \rightarrow 1} \frac{y+1}{y-1} \) Substituting \( y = 1 \): \[ \frac{1 + 1}{1 - 1} = \frac{2}{0} \] This approaches \( +\infty \) from the right and \( -\infty \) from the left. Therefore, the limit does not exist. **Limit: Does not exist** ### g) \( \lim _{h \rightarrow 0} \frac{3 h+h^{2}}{h} \) Factor out \( h \): \[ \frac{h(3 + h)}{h} = 3 + h \quad \text{for } h \neq 0 \] Now substitute \( h = 0 \): \[ 3 + 0 = 3 \] **Limit: 3** ### h) \( \lim _{h \rightarrow 1} \frac{h^{3}-1}{h-1} \) Factor the numerator: \[ h^3 - 1 = (h - 1)(h^2 + h + 1) \] Thus, \[ \frac{(h - 1)(h^2 + h + 1)}{h - 1} = h^2 + h + 1 \quad \text{for } h \neq 1 \] Now substitute \( h = 1 \): \[ 1^2 + 1 + 1 = 3 \] **Limit: 3** ### i) \( \lim _{x \rightarrow 3} \frac{\sqrt{x}-\sqrt{3}}{x-3} \) This is an indeterminate form \( \frac{0}{0} \). We can use L'Hôpital's Rule: \[ \text{Differentiate the numerator and denominator:} \] \[ \text{Numerator: } \frac{1}{2\sqrt{x}}, \quad \text{Denominator: } 1 \] Now apply L'Hôpital's Rule: \[ \lim_{x \to 3} \frac{\frac{1}{2\sqrt{x}}}{1} = \frac{1}{2\sqrt{3}} \] **Limit: \( \

Quick Answer

a) Limit: 4 b) Limit: 7 c) Limit: \( \frac{37}{6} \) d) Limit: Does not exist e) Limit: 0 f) Limit: Does not exist g) Limit: 3 h) Limit: 3 i) Limit: \( \frac{1}{2\sqrt{3}} \)
Answered by UpStudy AI and reviewed by a Professional Tutor
UpStudy ThothAI
Self-Developed and Ever-Improving
Thoth AI product is constantly being upgraded and optimized.
Covers All Major Subjects
Capable of handling homework in math, chemistry, biology, physics, and more.
Instant and Accurate
Provides immediate and precise solutions and guidance.
Try Now
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text

Enter your question here…

By image
Re-Upload
Uploaded Files
xxxx.png0%
Submit
📸 STUDY CAN BE A REAL STRUGGLE
Why Not UpStudy It?
Select your plan below
Premium

You can enjoy

  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to answer and
    solution
Basic
  • Limited Solutions