Delgado Erickson
06/11/2023 · Elementary School

4. Prove that \( \frac{\tan A}{1-\cot A}+\frac{\cot A}{1-\tan A}=1+\tan A+\cot A=1+\sec A \operatorname{cosec} A \)

UpStudy ThothAI Solution

Tutor-Verified Answer

Step-by-step Solution

To prove the identity \[ \frac{\tan A}{1 - \cot A} + \frac{\cot A}{1 - \tan A} = 1 + \tan A + \cot A = 1 + \sec A \csc A, \] we will start by simplifying the left-hand side: 1. **Rewrite \(\tan A\) and \(\cot A\)**: \[ \tan A = \frac{\sin A}{\cos A}, \quad \cot A = \frac{\cos A}{\sin A}. \] 2. **Substituting into the left-hand side**: \[ \frac{\tan A}{1 - \cot A} = \frac{\frac{\sin A}{\cos A}}{1 - \frac{\cos A}{\sin A}} = \frac{\frac{\sin A}{\cos A}}{\frac{\sin A - \cos A}{\sin A}} = \frac{\sin^2 A}{\cos A (\sin A - \cos A)}. \] Similarly, \[ \frac{\cot A}{1 - \tan A} = \frac{\frac{\cos A}{\sin A}}{1 - \frac{\sin A}{\cos A}} = \frac{\frac{\cos A}{\sin A}}{\frac{\cos A - \sin A}{\cos A}} = \frac{\cos^2 A}{\sin A (\cos A - \sin A)}. \] 3. **Combine the two fractions**: \[ \frac{\tan A}{1 - \cot A} + \frac{\cot A}{1 - \tan A} = \frac{\sin^2 A}{\cos A (\sin A - \cos A)} + \frac{\cos^2 A}{\sin A (\cos A - \sin A)}. \] Notice that \(\cos A - \sin A = -(\sin A - \cos A)\), so we can rewrite the second term: \[ \frac{\cos^2 A}{\sin A (\cos A - \sin A)} = -\frac{\cos^2 A}{\sin A (\sin A - \cos A)}. \] Thus, we have: \[ \frac{\tan A}{1 - \cot A} + \frac{\cot A}{1 - \tan A} = \frac{\sin^2 A}{\cos A (\sin A - \cos A)} - \frac{\cos^2 A}{\sin A (\sin A - \cos A)}. \] Combine the fractions: \[ = \frac{\sin^2 A \sin A - \cos^2 A \cos A}{\sin A \cos A (\sin A - \cos A)} = \frac{\sin^3 A - \cos^3 A}{\sin A \cos A (\sin A - \cos A)}. \] 4. **Factor the numerator**: The numerator \(\sin^3 A - \cos^3 A\) can be factored using the difference of cubes: \[ \sin^3 A - \cos^3 A = (\sin A - \cos A)(\sin^2 A + \sin A \cos A + \cos^2 A). \] Since \(\sin^2 A + \cos^2 A = 1\), we have: \[ \sin^3 A - \cos^3 A = (\sin A - \cos A)(1 + \sin A \cos A). \] 5. **Substituting back**: Substitute this back into our expression: \[ \frac{(\sin A - \cos A)(1 + \sin A \cos A)}{\sin A \cos A (\sin A - \cos A)}. \] The \((\sin A - \cos A)\) terms cancel (assuming \(A \neq \frac{\pi}{4} + n\frac{\pi}{2}\)): \[ = \frac{1 + \sin A \cos A}{\sin A \cos A}. \] 6. **Simplifying further**: This can be rewritten as: \[ = \frac{1}{\sin A \cos A} + 1 = \csc A \sec A + 1. \] 7. **Final result**: Thus, we have shown that: \[ \frac{\tan A}{1 - \cot A} + \frac{\cot A}{1 - \tan A} = 1

Quick Answer

The identity \( \frac{\tan A}{1 - \cot A} + \frac{\cot A}{1 - \tan A} = 1 + \tan A + \cot A = 1 + \sec A \csc A \) is proven by simplifying the left-hand side and showing it equals 1.
Answered by UpStudy AI and reviewed by a Professional Tutor
UpStudy ThothAI
Self-Developed and Ever-Improving
Thoth AI product is constantly being upgraded and optimized.
Covers All Major Subjects
Capable of handling homework in math, chemistry, biology, physics, and more.
Instant and Accurate
Provides immediate and precise solutions and guidance.
Try Now
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text

Enter your question here…

By image
Re-Upload
Uploaded Files
xxxx.png0%
Submit
📸 STUDY CAN BE A REAL STRUGGLE
Why Not UpStudy It?
Select your plan below
Premium

You can enjoy

  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to answer and
    solution
Basic
  • Limited Solutions