Parsons Carter
01/16/2023 · Primary School

\( \int _{}^{}\frac{1}{\cos (x)^{2}\sqrt {1+\tan (x)}} d x \)

UpStudy ThothAI Solution

Tutor-Verified Answer

Step-by-step Solution

To solve the integral \[ I = \int \frac{1}{\cos^2(x) \sqrt{1 + \tan(x)}} \, dx, \] we can start by making a substitution. Let \[ u = \tan(x). \] Then, the derivative of \( u \) with respect to \( x \) is \[ \frac{du}{dx} = \sec^2(x) = \frac{1}{\cos^2(x)}. \] This implies that \[ dx = \cos^2(x) \, du. \] Next, we need to express \( \sqrt{1 + \tan(x)} \) in terms of \( u \): \[ \sqrt{1 + \tan(x)} = \sqrt{1 + u}. \] Now, substituting \( u \) into the integral, we have: \[ I = \int \frac{1}{\cos^2(x) \sqrt{1 + u}} \cdot \cos^2(x) \, du = \int \frac{1}{\sqrt{1 + u}} \, du. \] The integral \[ \int \frac{1}{\sqrt{1 + u}} \, du \] can be solved using the standard integral formula: \[ \int \frac{1}{\sqrt{a + u}} \, du = 2\sqrt{a + u} + C. \] In our case, \( a = 1 \), so we have: \[ \int \frac{1}{\sqrt{1 + u}} \, du = 2\sqrt{1 + u} + C. \] Now, substituting back \( u = \tan(x) \): \[ I = 2\sqrt{1 + \tan(x)} + C. \] Thus, the final result for the integral is: \[ \int \frac{1}{\cos^2(x) \sqrt{1 + \tan(x)}} \, dx = 2\sqrt{1 + \tan(x)} + C. \]

Quick Answer

The integral \( \int \frac{1}{\cos^2(x) \sqrt{1 + \tan(x)}} \, dx \) simplifies to \( 2\sqrt{1 + \tan(x)} + C \).
Answered by UpStudy AI and reviewed by a Professional Tutor
UpStudy ThothAI
Self-Developed and Ever-Improving
Thoth AI product is constantly being upgraded and optimized.
Covers All Major Subjects
Capable of handling homework in math, chemistry, biology, physics, and more.
Instant and Accurate
Provides immediate and precise solutions and guidance.
Try Now
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text

Enter your question here…

By image
Re-Upload
Uploaded Files
xxxx.png0%
Submit
📸 STUDY CAN BE A REAL STRUGGLE
Why Not UpStudy It?
Select your plan below
Premium

You can enjoy

  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to answer and
    solution
Basic
  • Limited Solutions