Gonzalez Cox
12/26/2023 · Senior High School

Usando logaritmos, encuentren las derivadas de las siguientes funciones \( \begin{array}{lll}\text { a) } y=x^{x+1} & \text { b) } y=t^{\sqrt{t}} & \text { c) } y=(\sqrt{t})^{t} \\ \text { d) } y=(\ln x)^{x} & \text { e) } y=(\cos s)^{s} & \text { f) } y=(\tan x)^{x^{2}+1}\end{array} \)

UpStudy ThothAI Solution

Tutor-Verified Answer

Step-by-step Solution

Para encontrar las derivadas de las funciones dadas usando logaritmos, aplicaremos la técnica de logaritmos implícitos. Esto implica tomar el logaritmo natural de ambos lados de la ecuación y luego derivar. Vamos a resolver cada caso uno por uno. ### a) \( y = x^{x+1} \) 1. Tomamos el logaritmo natural: \[ \ln y = \ln(x^{x+1}) = (x+1) \ln x \] 2. Derivamos ambos lados: \[ \frac{1}{y} \frac{dy}{dx} = \frac{d}{dx}((x+1) \ln x) \] Usamos la regla del producto: \[ \frac{d}{dx}((x+1) \ln x) = \ln x + (x+1) \cdot \frac{1}{x} = \ln x + 1 + \frac{1}{x} \] 3. Entonces: \[ \frac{1}{y} \frac{dy}{dx} = \ln x + 1 + \frac{1}{x} \] 4. Multiplicamos por \( y \): \[ \frac{dy}{dx} = y \left( \ln x + 1 + \frac{1}{x} \right) = x^{x+1} \left( \ln x + 1 + \frac{1}{x} \right) \] ### b) \( y = t^{\sqrt{t}} \) 1. Tomamos el logaritmo natural: \[ \ln y = \ln(t^{\sqrt{t}}) = \sqrt{t} \ln t \] 2. Derivamos ambos lados: \[ \frac{1}{y} \frac{dy}{dt} = \frac{d}{dt}(\sqrt{t} \ln t) \] Usamos la regla del producto: \[ \frac{d}{dt}(\sqrt{t} \ln t) = \frac{1}{2\sqrt{t}} \ln t + \sqrt{t} \cdot \frac{1}{t} = \frac{1}{2\sqrt{t}} \ln t + \frac{1}{\sqrt{t}} \] 3. Entonces: \[ \frac{1}{y} \frac{dy}{dt} = \frac{1}{2\sqrt{t}} \ln t + \frac{1}{\sqrt{t}} \] 4. Multiplicamos por \( y \): \[ \frac{dy}{dt} = y \left( \frac{1}{2\sqrt{t}} \ln t + \frac{1}{\sqrt{t}} \right) = t^{\sqrt{t}} \left( \frac{1}{2\sqrt{t}} \ln t + \frac{1}{\sqrt{t}} \right) \] ### c) \( y = (\sqrt{t})^{t} \) 1. Tomamos el logaritmo natural: \[ \ln y = \ln((\sqrt{t})^{t}) = t \cdot \frac{1}{2} \ln t = \frac{t}{2} \ln t \] 2. Derivamos ambos lados: \[ \frac{1}{y} \frac{dy}{dt} = \frac{d}{dt}\left(\frac{t}{2} \ln t\right) \] Usamos la regla del producto: \[ \frac{d}{dt}\left(\frac{t}{2} \ln t\right) = \frac{1}{2} \ln t + \frac{1}{2} \] 3. Entonces: \[ \frac{1}{y} \frac{dy}{dt} = \frac{1}{2} \ln t + \frac{1}{2} \] 4. Multiplicamos por \( y \): \[ \frac{dy}{dt} = y \left( \frac{1}{2} \ln t + \frac{1}{2} \right) = (\sqrt{t})^{t} \left( \frac{1}{2} \ln t + \frac{1}{2} \right) \] ### d) \( y = (\ln x)^{x} \) 1. Tomamos el logarit

Quick Answer

a) \( y = x^{x+1} \): Derivative is \( y' = x^{x+1} \left( \ln x + 1 + \frac{1}{x} \right) \). b) \( y = t^{\sqrt{t}} \): Derivative is \( y' = t^{\sqrt{t}} \left( \frac{1}{2\sqrt{t}} \ln t + \frac{1}{\sqrt{t}} \right) \). c) \( y = (\sqrt{t})^{t} \): Derivative is \( y' = (\sqrt{t})^{t} \left( \frac{1}{2} \ln t + \frac{1}{2} \right) \). d) \( y = (\ln x)^{x} \): Derivative is \( y' = (\ln x)^{x} \left( \frac{1}{x} \ln \ln x + \frac{1}{x} \right) \). e) \( y = (\cos s)^{s} \): Derivative is \( y' = (\cos s)^{s} \left( -\sin s \ln \cos s + \frac{1}{\cos s} \right) \). f) \( y = (\tan x)^{x^{2}+1} \): Derivative is \( y' = (\tan x)^{x^{2}+1} \left( \frac{2x \tan x + x^2}{\cos^2 x} \ln \tan x + \frac{x^2 + 1}{\cos^2 x} \right) \).
Answered by UpStudy AI and reviewed by a Professional Tutor
UpStudy ThothAI
Self-Developed and Ever-Improving
Thoth AI product is constantly being upgraded and optimized.
Covers All Major Subjects
Capable of handling homework in math, chemistry, biology, physics, and more.
Instant and Accurate
Provides immediate and precise solutions and guidance.
Try Now
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text

Enter your question here…

By image
Re-Upload
Uploaded Files
xxxx.png0%
Submit
📸 STUDY CAN BE A REAL STRUGGLE
Why Not UpStudy It?
Select your plan below
Premium

You can enjoy

  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to answer and
    solution
Basic
  • Limited Solutions