Barker Spencer
10/09/2023 · Elementary School

Find the domain and the vertical and horizontal asymptotes. Separate your asymptote answers with commas, if there are multiple, or enter "DNE" if there are none. \( f(x)=\frac{x+1}{x^{2}+5} \) Domain: Vertical asymptote(s): \( x= \) Horizontal asymptote(s): \( y= \)

UpStudy ThothAI Solution

Tutor-Verified Answer

Step-by-step Solution

Analyze the critical points of the function \( f(x)=\frac{x+1}{x^{2}+5} \) Function by following steps: - step0: Find the critical numbers: \(f\left(x\right)=\frac{x+1}{x^{2}+5}\) - step1: Find the domain: \(f\left(x\right)=\frac{x+1}{x^{2}+5},x \in \mathbb{R}\) - step2: Find the derivative: \(f^{\prime}\left(x\right)=\frac{-x^{2}+5-2x}{\left(x^{2}+5\right)^{2}}\) - step3: Find the domain: \(f^{\prime}\left(x\right)=\frac{-x^{2}+5-2x}{\left(x^{2}+5\right)^{2}},x \in \mathbb{R}\) - step4: Substitute \(f^{\prime}\left(x\right)=0:\) \(0=\frac{-x^{2}+5-2x}{\left(x^{2}+5\right)^{2}}\) - step5: Swap the sides: \(\frac{-x^{2}+5-2x}{\left(x^{2}+5\right)^{2}}=0\) - step6: Cross multiply: \(-x^{2}+5-2x=\left(x^{2}+5\right)^{2}\times 0\) - step7: Simplify the equation: \(-x^{2}+5-2x=0\) - step8: Rewrite in standard form: \(-x^{2}-2x+5=0\) - step9: Multiply both sides: \(x^{2}+2x-5=0\) - step10: Solve using the quadratic formula: \(x=\frac{-2\pm \sqrt{2^{2}-4\left(-5\right)}}{2}\) - step11: Simplify the expression: \(x=\frac{-2\pm \sqrt{24}}{2}\) - step12: Simplify the expression: \(x=\frac{-2\pm 2\sqrt{6}}{2}\) - step13: Separate into possible cases: \(\begin{align}&x=\frac{-2+2\sqrt{6}}{2}\\&x=\frac{-2-2\sqrt{6}}{2}\end{align}\) - step14: Simplify the expression: \(\begin{align}&x=-1+\sqrt{6}\\&x=\frac{-2-2\sqrt{6}}{2}\end{align}\) - step15: Simplify the expression: \(\begin{align}&x=-1+\sqrt{6}\\&x=-1-\sqrt{6}\end{align}\) Analyze the extrema of the function \( f(x)=\frac{x+1}{x^{2}+5} \) Function by following steps: - step0: Find the local extrema: \(f\left(x\right)=\frac{x+1}{x^{2}+5}\) - step1: Find the domain: \(f\left(x\right)=\frac{x+1}{x^{2}+5},x \in \mathbb{R}\) - step2: Find the derivative: \(f^{\prime}\left(x\right)=\frac{-x^{2}+5-2x}{\left(x^{2}+5\right)^{2}}\) - step3: Find the domain: \(f^{\prime}\left(x\right)=\frac{-x^{2}+5-2x}{\left(x^{2}+5\right)^{2}},x \in \mathbb{R}\) - step4: Substitute \(f^{\prime}\left(x\right)=0:\) \(0=\frac{-x^{2}+5-2x}{\left(x^{2}+5\right)^{2}}\) - step5: Swap the sides: \(\frac{-x^{2}+5-2x}{\left(x^{2}+5\right)^{2}}=0\) - step6: Cross multiply: \(-x^{2}+5-2x=\left(x^{2}+5\right)^{2}\times 0\) - step7: Simplify the equation: \(-x^{2}+5-2x=0\) - step8: Rewrite in standard form: \(-x^{2}-2x+5=0\) - step9: Multiply both sides: \(x^{2}+2x-5=0\) - step10: Solve using the quadratic formula: \(x=\frac{-2\pm \sqrt{2^{2}-4\left(-5\right)}}{2}\) - step11: Simplify the expression: \(x=\frac{-2\pm \sqrt{24}}{2}\) - step12: Simplify the expression: \(x=\frac{-2\pm 2\sqrt{6}}{2}\) - step13: Separate into possible cases: \(\begin{align}&x=\frac{-2+2\sqrt{6}}{2}\\&x=\frac{-2-2\sqrt{6}}{2}\end{align}\) - step14: Simplify the expression: \(\begin{align}&x=-1+\sqrt{6}\\&x=\frac{-2-2\sqrt{6}}{2}\end{align}\) - step15: Simplify the expression: \(\begin{align}&x=-1+\sqrt{6}\\&x=-1-\sqrt{6}\end{align}\) - step16: Determine the intervals: \(\begin{align}&\left(-1-\sqrt{6},-1+\sqrt{6}\right),\left(-1+\sqrt{6},+\infty\right)\\&\left(-\infty,-1-\sqrt{6}\right),\left(-1-\sqrt{6},-1+\sqrt{6}\right)\end{align}\) - step17: Choose the points: \(\begin{align}&x_{1}=-1,x_{2}=2\\&x_{3}=-4,x_{4}=-1\end{align}\) - step18: Find the values of the derivatives: \(\begin{align}&f^{\prime}\left(-1\right)=\frac{1}{6},f^{\prime}\left(2\right)=-\frac{1}{27}\\&f^{\prime}\left(-4\right)\approx -0.006803,f^{\prime}\left(-1\right)=\frac{1}{6}\end{align}\) - step19: The local maximum is at \(x=-1+\sqrt{6}:\) \(\begin{align}&f\left(x\right)=\frac{x+1}{x^{2}+5},x=-1+\sqrt{6}\\&f\left(x\right)=\frac{x+1}{x^{2}+5},x=-1-\sqrt{6}\end{align}\) - step20: Calculate the function value: \(\begin{align}&f\left(-1+\sqrt{6} \right)=\frac{\sqrt{6}+1}{10}\\&f\left(-1-\sqrt{6} \right)=\frac{1-\sqrt{6}}{10}\end{align}\) - step21: The local maximum of the function is \(\frac{\sqrt{6}+1}{10}\) at \(x = -1+\sqrt{6}:\) \(\begin{align}&\textrm{The local maximum is }\frac{\sqrt{6}+1}{10}\textrm{ at }x = -1+\sqrt{6}\\&\textrm{The local minimum is }\frac{1-\sqrt{6}}{10}\textrm{ at }x = -1-\sqrt{6}\end{align}\) The domain of the function \( f(x)=\frac{x+1}{x^{2}+5} \) is all real numbers except for the values where the denominator is equal to zero. The critical points are \( x=-1+\sqrt{6} \) and \( x=-1-\sqrt{6} \). The local maximum is \( \frac{\sqrt{6}+1}{10} \) at \( x=-1+\sqrt{6} \) and the local minimum is \( \frac{1-\sqrt{6}}{10} \) at \( x=-1-\sqrt{6} \). To find the vertical asymptotes, we need to determine the values of \( x \) for which the denominator \( x^{2}+5 \) is equal to zero. The vertical asymptotes occur at these values. To find the horizontal asymptote, we need to analyze the behavior of the function as \( x \) approaches positive or negative infinity. The horizontal asymptote is the value that the function approaches as \( x \) goes to positive or negative infinity. Let's calculate the vertical asymptotes and the horizontal asymptote. Function by following steps: - step0: Find the vertical asymptotes: \(f\left(x\right)=\frac{x+1}{x^{2}+5}\) - step1: The function has no vertical asymptote: \(\textrm{No vertical asymptotes}\) Find the horizontal asymptotes of the function \( f(x)=\frac{x+1}{x^{2}+5} \) Function by following steps: - step0: Find the horizontal asymptotes: \(f\left(x\right)=\frac{x+1}{x^{2}+5}\) - step1: Evaluate the limits \(\lim _{x\rightarrow +\infty}\left(f\left(x\right)\right)\) and \(\lim _{x\rightarrow -\infty}\left(f\left(x\right)\right):\) \(\begin{align}&\lim _{x\rightarrow +\infty}\left(\frac{x+1}{x^{2}+5}\right)\\&\lim _{x\rightarrow -\infty}\left(\frac{x+1}{x^{2}+5}\right)\end{align}\) - step2: Calculate: \(\begin{align}&0\\&0\end{align}\) - step3: The finite values are horizontal asymptotes: \(\begin{align}&f\left(x\right)=0\end{align}\) The domain of the function \( f(x)=\frac{x+1}{x^{2}+5} \) is all real numbers. The vertical asymptotes are not present for this function. The horizontal asymptote is \( y=0 \). Therefore, the domain is all real numbers, the vertical asymptotes are not present, and the horizontal asymptote is \( y=0 \).

Quick Answer

Domain: all real numbers, Vertical asymptote(s): DNE, Horizontal asymptote(s): \( y=0 \)
Answered by UpStudy AI and reviewed by a Professional Tutor
UpStudy ThothAI
Self-Developed and Ever-Improving
Thoth AI product is constantly being upgraded and optimized.
Covers All Major Subjects
Capable of handling homework in math, chemistry, biology, physics, and more.
Instant and Accurate
Provides immediate and precise solutions and guidance.
Try Now
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text

Enter your question here…

By image
Re-Upload
Uploaded Files
xxxx.png0%
Submit
📸 STUDY CAN BE A REAL STRUGGLE
Why Not UpStudy It?
Select your plan below
Premium

You can enjoy

  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to answer and
    solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic
  • Limited Solutions