Wilson Crawford
08/24/2024 · Middle School

d) Find \( \frac{d y}{d x} \) if \( y=\frac{\sin x^{\cos x}}{x^{3}} \)

UpStudy ThothAI Solution

Tutor-Verified Answer

Step-by-step Solution

To find \( \frac{dy}{dx} \) for the function \( y = \frac{\sin(x^{\cos x})}{x^3} \), we will use the quotient rule and the chain rule. The quotient rule states that if \( y = \frac{u}{v} \), then \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] In our case, let: - \( u = \sin(x^{\cos x}) \) - \( v = x^3 \) First, we need to find \( \frac{du}{dx} \) and \( \frac{dv}{dx} \). 1. **Finding \( \frac{dv}{dx} \)**: \[ \frac{dv}{dx} = \frac{d}{dx}(x^3) = 3x^2 \] 2. **Finding \( \frac{du}{dx} \)**: To differentiate \( u = \sin(x^{\cos x}) \), we will use the chain rule. Let \( z = x^{\cos x} \), then \( u = \sin(z) \). Using the chain rule: \[ \frac{du}{dx} = \cos(z) \frac{dz}{dx} \] Now we need to find \( \frac{dz}{dx} \): \[ z = x^{\cos x} = e^{\cos x \ln x} \] Using the chain rule and product rule: \[ \frac{dz}{dx} = e^{\cos x \ln x} \cdot \frac{d}{dx}(\cos x \ln x) \] Now we differentiate \( \cos x \ln x \): Using the product rule: \[ \frac{d}{dx}(\cos x \ln x) = \frac{d}{dx}(\cos x) \cdot \ln x + \cos x \cdot \frac{d}{dx}(\ln x) \] Calculating the derivatives: \[ \frac{d}{dx}(\cos x) = -\sin x \] \[ \frac{d}{dx}(\ln x) = \frac{1}{x} \] Thus, \[ \frac{d}{dx}(\cos x \ln x) = -\sin x \ln x + \cos x \cdot \frac{1}{x} \] Putting it all together: \[ \frac{dz}{dx} = x^{\cos x} \left(-\sin x \ln x + \frac{\cos x}{x}\right) \] Now substituting back into \( \frac{du}{dx} \): \[ \frac{du}{dx} = \cos(x^{\cos x}) \cdot x^{\cos x} \left(-\sin x \ln x + \frac{\cos x}{x}\right) \] 3. **Putting it all together**: Now we can substitute \( u \), \( v \), \( \frac{du}{dx} \), and \( \frac{dv}{dx} \) into the quotient rule: \[ \frac{dy}{dx} = \frac{x^3 \cdot \left[\cos(x^{\cos x}) \cdot x^{\cos x} \left(-\sin x \ln x + \frac{\cos x}{x}\right)\right] - \sin(x^{\cos x}) \cdot 3x^2}{(x^3)^2} \] Simplifying this gives: \[ \frac{dy}{dx} = \frac{x^3 \cos(x^{\cos x}) x^{\cos x} \left(-\sin x \ln x + \frac{\cos x}{x}\right) - 3x^2 \sin(x^{\cos x})}{x^6} \] Finally, we can simplify the expression: \[ \frac{dy}{dx} = \frac{\cos(x^{\cos x}) x^{\cos x} \left(-\sin x \ln x + \frac{\cos x}{x}\right) - \frac{3 \sin(x^{\cos x})}{x}}{x^3} \] Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{\cos(x^{\cos x}) x^{\cos x} \left(-\sin x \ln x + \frac{\cos x}{x}\right) - 3 \sin(x^{\cos x

Quick Answer

The derivative \( \frac{dy}{dx} \) of the function \( y = \frac{\sin(x^{\cos x})}{x^{3}} \) is: \[ \frac{dy}{dx} = \frac{\cos(x^{\cos x}) x^{\cos x} \left(-\sin x \ln x + \frac{\cos x}{x}\right) - 3 \sin(x^{\cos x})}{x^3} \]
Answered by UpStudy AI and reviewed by a Professional Tutor
UpStudy ThothAI
Self-Developed and Ever-Improving
Thoth AI product is constantly being upgraded and optimized.
Covers All Major Subjects
Capable of handling homework in math, chemistry, biology, physics, and more.
Instant and Accurate
Provides immediate and precise solutions and guidance.
Try Now
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text

Enter your question here…

By image
Re-Upload
Uploaded Files
xxxx.png0%
Submit
📸 STUDY CAN BE A REAL STRUGGLE
Why Not UpStudy It?
Select your plan below
Premium

You can enjoy

  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to answer and
    solution
Basic
  • Limited Solutions