girl-logo

Hacer preguntas

Pregunta

Huff Lambert

10/17/2023 · Escuela secundaria superior

How much money invested at 6% compounded continuously for 5 years will result in $916?

Responder
expertRespuesta verificada por expertos

Mcdonald Hammond
Supertutor
5.0 (46votos)

$681.82

Solución

Step 1: 
Use the formula for continuous compounding: 

\[A = P e^ { rt} \]\(A\) is the amount of money accumulated after n years, including interest. 
\(P\) is the principal amount (the initial amount of money). 
\(r\) is the annual interest rate (decimal). 
\(t\) is the time the money is invested for in years. 
\(e\) is the base of the natural logarithm, approximately equal to 2.71828.

 

Step 2:

Given: 
\(A = 916\) dollars 
\(r = 0.06\) 
\(t = 5\) years

 

Step 3:

Rearrange the formula to solve for \(P\)
\[P = \frac { A} { e^ { rt} } \]

 

Step 4:

Substitute the given values into the formula: 
\[P = \frac { 916} { e^ { 0.06 \times 5} } \]

 

Step 5:

Calculate the exponent: 
\[e^ { 0.3} \approx 1.34986\]

 

Step 6:

Divide the amount by the calculated exponent: 
\[P = \frac { 916} { 1.34986} \approx 678.61\]

 

Supplemental Knowledge:

Continuous compounding in finance refers to an interest-accrual method in which interest is computed and added directly onto principal over time instead of at discrete intervals. The formula for continuous compounding derives from exponential function; specifically:

\[A = P e^ { rt} \]

Where: 
\(A\) is the amount of money accumulated after n years, including interest. 
\(P\) is the principal amount (the initial amount of money). 
\(r\) is the annual interest rate (decimal). 
\(t\) is the time the money is invested for, in years. 
\(e\) is Euler's number (approximately 2.71828).

To find out how much money needs to be invested initially (\(P\)) to reach a certain amount (\(A\)) after a given time period with continuous compounding, you can rearrange the formula:

\[P = \frac { A} { e^ { rt} } \]

 

Applied Knowledge:

Imagine you are planning for your child's college education and you want to ensure there will be enough funds when they start classes in five years time. By understanding continuous compounding, you can calculate how much to invest now at certain interest rates to reach this financial goal.

As well, knowing how different compounding methods affect investments allows you to make educated choices when saving for retirement or large purchases like a house.


Need help with financial calculations and investment planning? UpStudy’s Algebra Functions Calculator can simplify complex formulas like continuous compound interest! With UpStudy’s tools and expert guidance, mastering financial mathematics becomes easy and intuitive. Explore our calculators today to enhance your learning experience!

¿Todavía tienes preguntas?
Pregunte a UpStudy en línea

  • Experto 24/7 tutores en vivo

  • Ilimitadonúmeros de preguntas

  • Paso a pasoexplicaciones

📸 EL ESTUDIO PUEDE SER UNA VERDADERA LUCHA
Por qué no UpStudy It?
Seleccione su plan a continuación
Prima

Puedes disfrutar

  • Paso a paso explicaciones
  • Experto 24/7 tutores en vivo
  • Ilimitado número de preguntas
  • Sin interrupciones
  • Acceso completo para responder y
    solución
  • Acceso completo para chat en PDF, chat en UpStudy, chat de navegación
Básico
  • Limitado Soluciones