girl-logo

Hacer preguntas

Pregunta

Barber Erickson

01/15/2024 · escuela secundaria

$15,000 at 15% compounded annually for 5 years:
A. $28,500.00
B. $30,170.36
C. $17.250.00
D. $26,250.45

Responder
expertRespuesta verificada por expertos

Willis Kirk
Supertutor
4.0 (34votos)

B. $30,170.36

Solución

Step 1: 
To calculate the future value of an investment compounded annually, use the formula: 
\[A = P \left ( 1 + \frac { r} { n} \right ) ^ { nt} \]

Where: 
\(A\) is the amount of money accumulated after n years, including interest. 
\(P\) is the principal amount (the initial amount of money). 
\(r\) is the annual interest rate (decimal). 
\(n\) is the number of times that interest is compounded per year. 
\(t\) is the number of years the money is invested for.

 

Step 2:

Given: 
\(P = 15,000\) 
\(r = 0.15\) 
\(n = 1\) (compounded annually) 
\(t = 5\)

 

Step 3:

Plug these values into the formula: 
\[A = 15,000 \left ( 1 + \frac { 0.15} { 1} \right ) ^ { 1 \times 5} \] 
\[A = 15,000 \left ( 1 + 0.15\right ) ^ 5\] 
\[A = 15,000 \left ( 1.15\right ) ^ 5\] 
\[A = 15,000 \times 2.011357\] 
\[A \approx 30,170.36\]

 

Step 4:

Thus, the future value is approximately $30,170.36, which matches option B.

 

Supplemental Knowledge:

Compound interest is a powerful concept in finance that refers to the process of earning interest on both the initial principal and the accumulated interest from previous periods. The formula for compound interest is:

\[A = P \left ( 1 + \frac { r} { n} \right ) ^ { nt} \]

where: 

\(A\) is the amount of money accumulated after n years, including interest. 
\(P\) is the principal amount (the initial amount of money). 
\(r\) is the annual interest rate (decimal). 
\(n\) is the number of times that interest is compounded per year. 
\(t\) is the number of years the money is invested for.

 

Life in Context:

Imagine investing $15,000 with an annual compound interest rate of 15% in a savings account that accrues compound interest annually, understanding compound interest helps predict how your investments will perform over time and can guide financial decisions that align with your long-term financial goals.

When saving for major purchases or retirement, understanding how your money will expand with compound interest is invaluable in setting realistic savings targets and timelines.


Need help with financial calculations or other math problems? UpStudy offers an array of calculators designed to simplify your calculations. For understanding and calculating compound interest effortlessly, try UpStudy’s Algebra Functions Calculator! It’s perfect for students, investors, and professionals alike.

¿Todavía tienes preguntas?
Pregunte a UpStudy en línea

  • Experto 24/7 tutores en vivo

  • Ilimitadonúmeros de preguntas

  • Paso a pasoexplicaciones

📸 EL ESTUDIO PUEDE SER UNA VERDADERA LUCHA
Por qué no UpStudy It?
Seleccione su plan a continuación
Prima

Puedes disfrutar

  • Paso a paso explicaciones
  • Experto 24/7 tutores en vivo
  • Ilimitado número de preguntas
  • Sin interrupciones
  • Acceso completo para responder y
    solución
  • Acceso completo para chat en PDF, chat en UpStudy, chat de navegación
Básico
  • Limitado Soluciones