Bolton West
07/21/2023 · Elementary School

Evaluate \( \int_{0}^{\infty} \frac{x^{8}\left(1-x^{6}\right)}{(1+x)^{24}} d x \)

UpStudy ThothAI Solution

Tutor-Verified Answer

Step-by-step Solution

To evaluate the integral \[ I = \int_{0}^{\infty} \frac{x^{8}(1-x^{6})}{(1+x)^{24}} \, dx, \] we can split it into two parts: \[ I = \int_{0}^{\infty} \frac{x^{8}}{(1+x)^{24}} \, dx - \int_{0}^{\infty} \frac{x^{14}}{(1+x)^{24}} \, dx. \] Let us denote these two integrals as \( I_1 \) and \( I_2 \): \[ I_1 = \int_{0}^{\infty} \frac{x^{8}}{(1+x)^{24}} \, dx, \] \[ I_2 = \int_{0}^{\infty} \frac{x^{14}}{(1+x)^{24}} \, dx. \] ### Step 1: Evaluate \( I_1 \) To evaluate \( I_1 \), we can use the beta function representation. The integral can be rewritten using the substitution \( x = \frac{t}{1-t} \), which gives \( dx = \frac{1}{(1-t)^2} dt \). The limits change from \( 0 \) to \( \infty \) to \( 0 \) to \( 1 \): \[ I_1 = \int_{0}^{1} \frac{\left(\frac{t}{1-t}\right)^{8}}{\left(1+\frac{t}{1-t}\right)^{24}} \cdot \frac{1}{(1-t)^2} \, dt. \] This simplifies to: \[ I_1 = \int_{0}^{1} \frac{t^{8}}{(1-t)^{8}} \cdot \frac{(1-t)^{24}}{(1-t+t)^{24}} \cdot \frac{1}{(1-t)^2} \, dt = \int_{0}^{1} \frac{t^{8}}{(1-t)^{10}} \cdot \frac{1}{(1)^{24}} \, dt. \] Thus, \[ I_1 = \int_{0}^{1} t^{8} (1-t)^{-10} \, dt. \] This integral can be evaluated using the beta function: \[ I_1 = B(9, 10) = \frac{\Gamma(9) \Gamma(10)}{\Gamma(19)}. \] Calculating the gamma functions: \[ \Gamma(9) = 8!, \quad \Gamma(10) = 9!, \quad \Gamma(19) = 18!. \] Thus, \[ I_1 = \frac{8! \cdot 9!}{18!}. \] Using the property \( n! = n \cdot (n-1)! \): \[ I_1 = \frac{8! \cdot 9 \cdot 8!}{18 \cdot 17 \cdots 10 \cdot 8!} = \frac{9 \cdot 8!}{18 \cdot 17 \cdots 10}. \] ### Step 2: Evaluate \( I_2 \) Similarly, for \( I_2 \): \[ I_2 = \int_{0}^{\infty} \frac{x^{14}}{(1+x)^{24}} \, dx. \] Using the same substitution \( x = \frac{t}{1-t} \): \[ I_2 = \int_{0}^{1} \frac{t^{14}}{(1-t)^{10}} \, dt = B(15, 10) = \frac{\Gamma(15) \Gamma(10)}{\Gamma(25)}. \] Calculating the gamma functions: \[ \Gamma(15) = 14!, \quad \Gamma(10) = 9!, \quad \Gamma(25) = 24!. \] Thus, \[ I_2 = \frac{14! \cdot 9!}{24!}. \] ### Step 3: Combine Results Now we can combine \( I_1 \) and \( I_2 \): \[ I = I_1 - I_2 = \frac{8! \cdot 9!}{18!} - \frac{14! \cdot 9!}{24!}. \] Factoring out \( 9! \): \[ I = 9! \left( \frac{8!}{

Quick Answer

The integral evaluates to \( I = 9! \left( \frac{8!}{18!} - \frac{14!}{24!} \right) \).
Answered by UpStudy AI and reviewed by a Professional Tutor
UpStudy ThothAI
Self-Developed and Ever-Improving
Thoth AI product is constantly being upgraded and optimized.
Covers All Major Subjects
Capable of handling homework in math, chemistry, biology, physics, and more.
Instant and Accurate
Provides immediate and precise solutions and guidance.
Try Now
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text

Enter your question here…

By image
Re-Upload
Uploaded Files
xxxx.png0%
Submit
📸 STUDY CAN BE A REAL STRUGGLE
Why Not UpStudy It?
Select your plan below
Premium

You can enjoy

  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to answer and
    solution
Basic
  • Limited Solutions