Hampton Young
04/21/2023 · High School

Sea \( T=T(x ; y) \) es la función temperatura de una placa metálica en el punto \( (x ; y) \) y está dada por la ecuación \( \operatorname{sen}(x+T)+\operatorname{sen}(x+y)=1 \) ¿para que valor de la constante a en el punto \( \left(\pi ; \frac{\pi}{2} ; \pi\right) \) se verifica la ecuación: \[ x \frac{\partial^{2} T}{\partial x^{2}}+z \frac{\partial^{2} T}{\partial y^{2}}=a\left(\frac{\partial T}{\partial y}-\frac{\partial T}{\partial x}\right) \]

UpStudy ThothAI Solution

Tutor-Verified Answer

Step-by-step Solution

Para resolver este problema, primero necesitamos encontrar el valor de la constante \( a \) en el punto \( \left(\pi ; \frac{\pi}{2} ; \pi\right) \) que verifica la ecuación dada: \[ x \frac{\partial^{2} T}{\partial x^{2}}+z \frac{\partial^{2} T}{\partial y^{2}}=a\left(\frac{\partial T}{\partial y}-\frac{\partial T}{\partial x}\right) \] Dado que \( T = T(x, y) \), primero calculamos las derivadas parciales necesarias de \( T \) con respecto a \( x \) y \( y \). 1. **Derivadas parciales de \( T \):** \[ \frac{\partial T}{\partial x} = \frac{\partial}{\partial x} \left( \sin(x + T) + \sin(x + y) \right) \] \[ \frac{\partial T}{\partial x} = \cos(x + T) \cdot \frac{\partial T}{\partial x} + \cos(x + y) \] \[ \frac{\partial T}{\partial x} - \cos(x + T) \cdot \frac{\partial T}{\partial x} = \cos(x + y) \] \[ \left(1 - \cos(x + T)\right) \frac{\partial T}{\partial x} = \cos(x + y) \] \[ \frac{\partial T}{\partial x} = \frac{\cos(x + y)}{1 - \cos(x + T)} \] \[ \frac{\partial T}{\partial y} = \frac{\partial}{\partial y} \left( \sin(x + T) + \sin(x + y) \right) \] \[ \frac{\partial T}{\partial y} = \cos(x + T) \cdot \frac{\partial T}{\partial y} + \cos(x + y) \] \[ \frac{\partial T}{\partial y} - \cos(x + T) \cdot \frac{\partial T}{\partial y} = \cos(x + y) \] \[ \left(1 - \cos(x + T)\right) \frac{\partial T}{\partial y} = \cos(x + y) \] \[ \frac{\partial T}{\partial y} = \frac{\cos(x + y)}{1 - \cos(x + T)} \] 2. **Segundas derivadas parciales de \( T \):** \[ \frac{\partial^{2} T}{\partial x^{2}} = \frac{\partial}{\partial x} \left( \frac{\cos(x + y)}{1 - \cos(x + T)} \right) \] \[ \frac{\partial^{2} T}{\partial x^{2}} = \frac{-\sin(x + y) \cdot \frac{\partial T}{\partial x} - \cos(x + y) \cdot \frac{\partial^{2} T}{\partial x^{2}}}{(1 - \cos(x + T))^2} \] \[ \frac{\partial^{2} T}{\partial x^{2}} = \frac{-\sin(x + y) \cdot \frac{\cos(x + y)}{1 - \cos(x + T)} - \cos(x + y) \cdot \frac{\partial^{2} T}{\partial x^{2}}}{(1 - \cos(x + T))^2} \] \[ \frac{\partial^{2} T}{\partial x^{2}} = \frac{-\sin(x + y) \cdot \cos(x + y) - \cos(x + y) \cdot \frac{\partial^{2} T}{\partial x^{2}}}{(1 - \cos(x + T))^2} \] \[ \frac{\partial^{2} T}{\partial x^{2}} = \frac{-\sin(x + y) \cdot \cos(x + y)}{(1 - \cos(x + T))^2} - \frac{\cos(x + y) \cdot \frac{\partial^{2} T}{\partial x^{2}}}{(1 - \cos(x + T))^2} \] \[ \frac{\partial^{2} T}{\partial x^{2}} = \frac{-\sin(x + y) \cdot \cos(x + y) - \cos(x + y) \cdot \

Quick Answer

Para encontrar el valor de la constante \( a \) en el punto \( \left(\pi ; \frac{\pi}{2} ; \pi\right) \), se deben calcular las derivadas parciales de \( T \) con respecto a \( x \) y \( y \), y luego insertar estos valores en la ecuación dada.
Answered by UpStudy AI and reviewed by a Professional Tutor
UpStudy ThothAI
Self-Developed and Ever-Improving
Thoth AI product is constantly being upgraded and optimized.
Covers All Major Subjects
Capable of handling homework in math, chemistry, biology, physics, and more.
Instant and Accurate
Provides immediate and precise solutions and guidance.
Try Now
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text

Enter your question here…

By image
Re-Upload
Uploaded Files
xxxx.png0%
Submit
📸 STUDY CAN BE A REAL STRUGGLE
Why Not UpStudy It?
Select your plan below
Premium

You can enjoy

  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to answer and
    solution
Basic
  • Limited Solutions