Mann Daniels
03/21/2023 · High School
Exercice2: 1) soit \( n \in \mathbb{N} \); montrer que ; \( n^{2}+3 n+3 \) est impair 2) \( 7^{2018}-1 \) est -il un nombre premier ? justifier la réponse 3) on pose: \( A=3^{n+3} \times 5^{n+1}-9 \) et \( n \in I N \) a) montrer que : \( A=9\left(15^{n+1}-1\right) \) b) quelle la parité de \( 15^{n+1} \) c) en déduire que: A est un multiple de 18 4) soit \( n \) un entier naturel tel que \( n>3 \) et on pose : \( X=\frac{2 n+7}{n-3} \)
UpStudy ThothAI Solution
Tutor-Verified Answer
Quick Answer
1) \( n^{2}+3n+3 \) est impair pour tout \( n \in \mathbb{N} \).
2) \( 7^{2018} - 1 \) n'est pas un nombre premier.
3) a) \( A = 9(15^{n+1} - 1) \). b) \( 15^{n+1} \) est impair. c) \( A \) est un multiple de 18.
4) \( X \) est un nombre réel positif et supérieur à 2.
Step-by-step Solution
Answered by UpStudy AI and reviewed by a Professional Tutor
UpStudy ThothAI
Self-Developed and Ever-Improving
Thoth AI product is constantly being upgraded and optimized.
Covers All Major Subjects
Capable of handling homework in math, chemistry, biology, physics, and more.
Instant and Accurate
Provides immediate and precise solutions and guidance.
Try Now
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text
Enter your question here…
By image
Re-Upload
Submit