Joseph Bradley
09/01/2024 · Primary School

c. Proof that, if a function \( f(x) \) has a power series representation centered at \( x=a \) that converges to \( f(x) \) on some open interval containing \( a \), then this power series a Taylor series for \( f(x) \) at \( x=a \). [S]

UpStudy ThothAI Solution

Tutor-Verified Answer

Step-by-step Solution

要证明:如果函数 \( f(x) \) 在包含 \( a \) 的某个开区间上有幂级数展开,并且这个幂级数在该区间上收敛于 \( f(x) \),那么这个幂级数是 \( f(x) \) 在 \( x=a \) 处的泰勒级数。 ### 解题步骤: #### 步骤 1:定义幂级数 假设函数 \( f(x) \) 在包含 \( a \) 的某个开区间 \( (a-r, a+r) \) 上有幂级数展开,并且这个幂级数在该区间上收敛于 \( f(x) \)。即: \[ f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n \] 其中,系数 \( c_n \) 由以下公式给出: \[ c_n = \frac{f^{(n)}(a)}{n!} \] #### 步骤 2:泰勒级数的定义 根据泰勒级数的定义,如果函数 \( f(x) \) 在 \( x=a \) 处可展开为幂级数,那么这个幂级数可以写成: \[ f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n \] #### 步骤 3:比较两个级数 现在,我们比较两个级数: \[ f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n \] \[ f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n \] 可以看出,这两个级数的系数 \( c_n \) 和 \( \frac{f^{(n)}(a)}{n!} \) 是相同的。因此,我们可以得出结论: \[ c_n = \frac{f^{(n)}(a)}{n!} \] #### 步骤 4:结论 由于 \( c_n \) 和 \( \frac{f^{(n)}(a)}{n!} \) 相等,所以幂级数: \[ f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n \] 实际上就是 \( f(x) \) 在 \( x=a \) 处的泰勒级数。 因此,我们证明了如果函数 \( f(x) \) 在包含 \( a \) 的某个开区间上有幂级数展开,并且这个幂级数在该区间上收敛于 \( f(x) \),那么这个幂级数是 \( f(x) \) 在 \( x=a \) 处的泰勒级数。

Quick Answer

如果函数 \( f(x) \) 在包含 \( a \) 的某个开区间上有幂级数展开,并且这个幂级数在该区间上收敛于 \( f(x) \),那么这个幂级数就是 \( f(x) \) 在 \( x=a \) 处的泰勒级数。
Answered by UpStudy AI and reviewed by a Professional Tutor
UpStudy ThothAI
Self-Developed and Ever-Improving
Thoth AI product is constantly being upgraded and optimized.
Covers All Major Subjects
Capable of handling homework in math, chemistry, biology, physics, and more.
Instant and Accurate
Provides immediate and precise solutions and guidance.
Try Now
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text

Enter your question here…

By image
Re-Upload
Uploaded Files
xxxx.png0%
Submit
📸 STUDY CAN BE A REAL STRUGGLE
Why Not UpStudy It?
Select your plan below
Premium

You can enjoy

  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to answer and
    solution
Basic
  • Limited Solutions