French Conner
04/21/2024 · High School

Hallar la longitud de la curva \( 4 y=2 x^{2}-\ln x \) desde \( x=1 \) hasta \( x=e \)

UpStudy ThothAI Solution

Tutor-Verified Answer

Step-by-step Solution

Para hallar la longitud de la curva dada por la ecuación \( 4y = 2x^2 - \ln x \), primero debemos despejar \( y \): \[ y = \frac{1}{4}(2x^2 - \ln x) = \frac{1}{2}x^2 - \frac{1}{4}\ln x \] La fórmula para la longitud de una curva \( y = f(x) \) desde \( x = a \) hasta \( x = b \) es: \[ L = \int_a^b \sqrt{1 + \left( \frac{dy}{dx} \right)^2} \, dx \] Primero, calculamos la derivada \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{d}{dx} \left( \frac{1}{2}x^2 - \frac{1}{4}\ln x \right) = x - \frac{1}{4x} \] Ahora, simplificamos \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = x - \frac{1}{4x} = \frac{4x^2 - 1}{4x} \] Ahora, calculamos \( \left( \frac{dy}{dx} \right)^2 \): \[ \left( \frac{dy}{dx} \right)^2 = \left( \frac{4x^2 - 1}{4x} \right)^2 = \frac{(4x^2 - 1)^2}{16x^2} \] Ahora, sumamos 1 a \( \left( \frac{dy}{dx} \right)^2 \): \[ 1 + \left( \frac{dy}{dx} \right)^2 = 1 + \frac{(4x^2 - 1)^2}{16x^2} \] Para simplificar esto, llevamos a un denominador común: \[ 1 + \left( \frac{dy}{dx} \right)^2 = \frac{16x^2}{16x^2} + \frac{(4x^2 - 1)^2}{16x^2} = \frac{16x^2 + (4x^2 - 1)^2}{16x^2} \] Ahora, expandimos \( (4x^2 - 1)^2 \): \[ (4x^2 - 1)^2 = 16x^4 - 8x^2 + 1 \] Por lo tanto, \[ 1 + \left( \frac{dy}{dx} \right)^2 = \frac{16x^2 + 16x^4 - 8x^2 + 1}{16x^2} = \frac{16x^4 + 8x^2 + 1}{16x^2} \] Ahora, tomamos la raíz cuadrada: \[ \sqrt{1 + \left( \frac{dy}{dx} \right)^2} = \sqrt{\frac{16x^4 + 8x^2 + 1}{16x^2}} = \frac{\sqrt{16x^4 + 8x^2 + 1}}{4x} \] Ahora, la longitud de la curva desde \( x = 1 \) hasta \( x = e \) es: \[ L = \int_1^e \sqrt{1 + \left( \frac{dy}{dx} \right)^2} \, dx = \int_1^e \frac{\sqrt{16x^4 + 8x^2 + 1}}{4x} \, dx \] Para resolver esta integral, podemos simplificar el integrando: \[ L = \frac{1}{4} \int_1^e \frac{\sqrt{(4x^2 + 1)^2}}{x} \, dx = \frac{1}{4} \int_1^e \frac{4x^2 + 1}{x} \, dx = \frac{1}{4} \int_1^e (4x + \frac{1}{x}) \, dx \] Ahora, resolvemos la integral: \[ L = \frac{1}{4} \left( \int_1^e 4x \, dx + \int_1^e \frac{1}{x} \, dx \right) \] Calculamos cada parte: 1. \( \int 4x \, dx = 2x^2

Quick Answer

La longitud de la curva desde \( x = 1 \) hasta \( x = e \) es \( \frac{1}{4} \left( 2e^2 + 2 + \ln e - 1 \right) \).
Answered by UpStudy AI and reviewed by a Professional Tutor
UpStudy ThothAI
Self-Developed and Ever-Improving
Thoth AI product is constantly being upgraded and optimized.
Covers All Major Subjects
Capable of handling homework in math, chemistry, biology, physics, and more.
Instant and Accurate
Provides immediate and precise solutions and guidance.
Try Now
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text

Enter your question here…

By image
Re-Upload
Uploaded Files
xxxx.png0%
Submit
📸 STUDY CAN BE A REAL STRUGGLE
Why Not UpStudy It?
Select your plan below
Premium

You can enjoy

  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to answer and
    solution
Basic
  • Limited Solutions