1. Determine se as sequências são convergentes ou divergentes \( \begin{array}{lll}\text { a) } f(n)=\frac{n+1}{2 n-1} & \text { d) } f(n)=\frac{e^{n}}{n} & \text { g) } f(n)=\frac{n}{n+1} \operatorname{sen}\left(\frac{n \pi}{2}\right) \\ \text { b) } f(n)=\frac{2 n^{2}+1}{3 n^{2}-n} & \text { e) } f(n)=\frac{\ln n}{n^{2}} & \text { h) } f(n)=\frac{1}{\sqrt{n^{2}+1}-n} \\ \text { c) } f(n)=\frac{n^{2}+1}{n} & \text { f) } f(n)=\operatorname{senh} n & \text { i) } f(n)=\sqrt{n+1}-\sqrt{n} \\ \text { j) } f(n)=\left(1+\frac{1}{3 n}\right)^{n} & \left.\text { l) } f(n)=\frac{n^{2}}{2 n+1} \operatorname{sen}\left(\frac{\pi}{n}\right) n\right) f(n)=n \operatorname{sen}\left(\frac{\pi}{n}\right)\end{array} \)
UpStudy ThothAI Solution
Quick Answer
Step-by-step Solution
Enter your question here…