Let \( \left\{U_{1}=\left[\begin{array}{cc}-2 & 0 \\ 0 & 1\end{array}\right], U_{2}=\left[\begin{array}{cc}0 & -10 \\ 0 & 0\end{array}\right], U_{3}=\left[\begin{array}{cc}0 & 2 \\ 0 & -1\end{array}\right]\right\} \) be a basis for a subspace of \( \mathbb{R}_{2 \times 2} \). Use the Gram-Schmidt process to find an orthogonal basis under the Frobenius inner product. Orthogonal basic: \( \left\{V_{1}=\left[\begin{array}{cc}-2 & 0 \\ 0 & 1\end{array}\right], V_{2}=\left[\begin{array}{cc}a & -10 \\ b & 0\end{array}\right], V_{3}=\left[\begin{array}{cc}-0.4 & c \\ 0 & d\end{array}\right]\right\} \) \( a= \) Ex.5 \( 7 \quad b= \) Ex.5 \( \quad c= \) Ex:1.23 \( \quad d= \) Ex. 1.23
UpStudy ThothAI Solution
Quick Answer
Step-by-step Solution
Enter your question here…