Cervantes Zimmerman
04/06/2023 · High School

\( A=\left(\begin{array}{cccc}0 & 0 & 0 & -1 \\ 1 & 0 & 1 & -2 \\ 1 & 1 & 2 & 3 \\ 1 & 2 & 1 & 5\end{array}\right) \quad B=\left(\begin{array}{llll}0 & 2 & 0 & 0 \\ 2 & 1 & 4 & 3 \\ 1 & 3 & 2 & 1 \\ 2 & 0 & 1 & 0\end{array}\right) \) Obtener el valor de det \( \left(B^{3} \cdot A^{\tau}\right) \)

UpStudy ThothAI Solution

Tutor-Verified Answer

Step-by-step Solution

Para calcular el determinante de \( B^3 \cdot A^\tau \), donde \( A^\tau \) es la transpuesta de \( A \), utilizaremos la propiedad de los determinantes que dice que \( \det(AB) = \det(A) \cdot \det(B) \) y que \( \det(A^\tau) = \det(A) \). Primero, calculamos \( \det(A) \) y \( \det(B) \). ### Cálculo de \( \det(A) \) La matriz \( A \) es: \[ A = \begin{pmatrix} 0 & 0 & 0 & -1 \\ 1 & 0 & 1 & -2 \\ 1 & 1 & 2 & 3 \\ 1 & 2 & 1 & 5 \end{pmatrix} \] Usamos la regla de Sarrus o la expansión por cofactores. Aquí, expandimos por la primera fila: \[ \det(A) = 0 \cdot \det(M_{11}) - 0 \cdot \det(M_{12}) + 0 \cdot \det(M_{13}) - 1 \cdot \det(M_{14}) \] Donde \( M_{14} \) es la submatriz que se obtiene al eliminar la primera fila y la cuarta columna: \[ M_{14} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 2 \\ 1 & 2 & 1 \end{pmatrix} \] Calculamos \( \det(M_{14}) \): \[ \det(M_{14}) = 1 \cdot \det\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} - 0 + 1 \cdot \det\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \] Calculamos los determinantes de las submatrices: \[ \det\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} = 1 \cdot 1 - 2 \cdot 2 = 1 - 4 = -3 \] \[ \det\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} = 1 \cdot 2 - 1 \cdot 1 = 2 - 1 = 1 \] Por lo tanto, \[ \det(M_{14}) = 1 \cdot (-3) + 0 + 1 \cdot 1 = -3 + 1 = -2 \] Así que, \[ \det(A) = -(-2) = 2 \] ### Cálculo de \( \det(B) \) La matriz \( B \) es: \[ B = \begin{pmatrix} 0 & 2 & 0 & 0 \\ 2 & 1 & 4 & 3 \\ 1 & 3 & 2 & 1 \\ 2 & 0 & 1 & 0 \end{pmatrix} \] Usamos la expansión por la primera fila: \[ \det(B) = 0 \cdot \det(M_{11}) - 2 \cdot \det(M_{12}) + 0 \cdot \det(M_{13}) + 0 \cdot \det(M_{14}) \] Donde \( M_{12} \) es la submatriz que se obtiene al eliminar la primera fila y la segunda columna: \[ M_{12} = \begin{pmatrix} 2 & 4 & 3 \\ 1 & 2 & 1 \\ 2 & 1 & 0 \end{pmatrix} \] Calculamos \( \det(M_{12}) \): \[ \det(M_{12}) = 2 \cdot \det\begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix} - 4 \cdot \det\begin{pmatrix} 1 & 1 \\ 2 & 0 \end{pmatrix} + 3 \cdot \det\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \] Calculamos los determinantes de las submatrices: \[ \det\begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix} = 2 \cdot 0 - 1 \

Quick Answer

\[ \det(B^3 \cdot A^\tau) = \det(B^3) \cdot \det(A^\tau) = \det(B)^3 \cdot \det(A) = 8 \cdot 2 = 16 \]
Answered by UpStudy AI and reviewed by a Professional Tutor
UpStudy ThothAI
Self-Developed and Ever-Improving
Thoth AI product is constantly being upgraded and optimized.
Covers All Major Subjects
Capable of handling homework in math, chemistry, biology, physics, and more.
Instant and Accurate
Provides immediate and precise solutions and guidance.
Try Now
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text

Enter your question here…

By image
Re-Upload
Uploaded Files
xxxx.png0%
Submit
📸 STUDY CAN BE A REAL STRUGGLE
Why Not UpStudy It?
Select your plan below
Premium

You can enjoy

  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to answer and
    solution
Basic
  • Limited Solutions