May Long
01/18/2024 · High School

x) emostar qua: \( \operatorname{aec}^{4} \theta-\sec ^{2} \theta=\frac{1}{\cot ^{4} \theta}+\frac{1}{\cot ^{2} \theta} \)

UpStudy ThothAI Solution

Tutor-Verified Answer

Step-by-step Solution

为了证明等式 \( \operatorname{sec}^{4} \theta - \sec^{2} \theta = \frac{1}{\cot^{4} \theta} + \frac{1}{\cot^{2} \theta} \),我们可以按照以下步骤进行: ### 步骤 1:将等式左边转换为基本三角函数形式 首先,将等式左边转换为基本三角函数形式: \[ \operatorname{sec}^{4} \theta - \operatorname{sec}^{2} \theta \] 我们知道,\(\operatorname{sec} \theta = \frac{1}{\cos \theta}\),所以: \[ \operatorname{sec}^{4} \theta = \left(\frac{1}{\cos \theta}\right)^{4} = \frac{1}{\cos^{4} \theta} \] \[ \operatorname{sec}^{2} \theta = \left(\frac{1}{\cos \theta}\right)^{2} = \frac{1}{\cos^{2} \theta} \] 因此,等式左边可以写为: \[ \operatorname{sec}^{4} \theta - \operatorname{sec}^{2} \theta = \frac{1}{\cos^{4} \theta} - \frac{1}{\cos^{2} \theta} \] ### 步骤 2:将等式右边转换为基本三角函数形式 接下来,将等式右边转换为基本三角函数形式: \[ \frac{1}{\cot^{4} \theta} + \frac{1}{\cot^{2} \theta} \] 我们知道,\(\cot \theta = \frac{\cos \theta}{\sin \theta}\),所以: \[ \cot^{4} \theta = \left(\frac{\cos \theta}{\sin \theta}\right)^{4} = \frac{\cos^{4} \theta}{\sin^{4} \theta} \] \[ \cot^{2} \theta = \left(\frac{\cos \theta}{\sin \theta}\right)^{2} = \frac{\cos^{2} \theta}{\sin^{2} \theta} \] 因此,等式右边可以写为: \[ \frac{1}{\cot^{4} \theta} + \frac{1}{\cot^{2} \theta} = \frac{\sin^{4} \theta}{\cos^{4} \theta} + \frac{\sin^{2} \theta}{\cos^{2} \theta} \] ### 步骤 3:化简等式左边 现在,我们化简等式左边: \[ \frac{1}{\cos^{4} \theta} - \frac{1}{\cos^{2} \theta} \] 将两个分数合并: \[ \frac{1}{\cos^{4} \theta} - \frac{1}{\cos^{2} \theta} = \frac{\cos^{2} \theta - 1}{\cos^{4} \theta} \] 我们知道,\(\cos^{2} \theta - 1 = -\sin^{2} \theta\),所以: \[ \frac{\cos^{2} \theta - 1}{\cos^{4} \theta} = \frac{-\sin^{2} \theta}{\cos^{4} \theta} \] ### 步骤 4:化简等式右边 现在,我们化简等式右边: \[ \frac{\sin^{4} \theta}{\cos^{4} \theta} + \frac{\sin^{2} \theta}{\cos^{2} \theta} \] 将两个分数合并: \[ \frac{\sin^{4} \theta}{\cos^{4} \theta} + \frac{\sin^{2} \theta}{\cos^{2} \theta} = \frac{\sin^{2} \theta (\sin^{2} \theta + 1)}{\cos^{4} \theta} \] 我们知道,\(\sin^{2} \theta + 1 = \cos^{2} \theta\),所以: \[ \frac{\sin^{2} \theta (\sin^{2} \theta + 1)}{\cos^{4} \theta} = \frac{\sin^{2} \theta \cos^{2} \theta}{\cos^{4} \theta} = \frac{\sin^{2} \theta}{\cos^{2} \theta} \] ### 步骤 5:比较等式两边 现在,我们比较等式两边: 等式左边: \[ \frac{-\sin^{2} \theta}{\cos^{4} \theta} \] 等式右边: \[ \frac{\sin^{

Quick Answer

等式左边和右边相等,因此等式成立。
Answered by UpStudy AI and reviewed by a Professional Tutor
UpStudy ThothAI
Self-Developed and Ever-Improving
Thoth AI product is constantly being upgraded and optimized.
Covers All Major Subjects
Capable of handling homework in math, chemistry, biology, physics, and more.
Instant and Accurate
Provides immediate and precise solutions and guidance.
Try Now
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text

Enter your question here…

By image
Re-Upload
Uploaded Files
xxxx.png0%
Submit
📸 STUDY CAN BE A REAL STRUGGLE
Why Not UpStudy It?
Select your plan below
Premium

You can enjoy

  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to answer and
    solution
Basic
  • Limited Solutions