Gray Phillips
05/19/2024 · Middle School
3. En un \( \triangle A B C \) isósceles de base \( B C \), se trazan las bisectrices de los ángulos \( \angle B \) y \( \angle C \), las cuales se cortan en \( I \). Probar que el \( \triangle B I C \) es isósceles.
UpStudy ThothAI Solution
Tutor-Verified Answer
Quick Answer
Para probar que \( \triangle BIC \) es isósceles, se usa la propiedad de que en un triángulo isósceles, las bisectrices de los ángulos no base son congruentes. Por lo tanto, \( BI \) y \( CI \) son iguales, lo que hace a \( \triangle BIC \) isósceles.
Step-by-step Solution
Answered by UpStudy AI and reviewed by a Professional Tutor
UpStudy ThothAI
Self-Developed and Ever-Improving
Thoth AI product is constantly being upgraded and optimized.
Covers All Major Subjects
Capable of handling homework in math, chemistry, biology, physics, and more.
Instant and Accurate
Provides immediate and precise solutions and guidance.
Try Now
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text
Enter your question here…
By image
Re-Upload
Submit