Still have math questions?

Ask our expert tutors
Algebra
Question

A company makes two products, \( A \) and \( B \) ...

A company makes two products, \( A \) and \( B \) . Product 

\( A \) requires \( 12,5 \) hours of machining time and 

\( 30 \) minutes of finishing time per unit. Product \( B \) requires \( 10 \) hours of machining time and one hour of finishing time per unit. There are \( 10000 \) hours and \( 600 \) hours available for machining and finishing respectively. Severe material shortages for the two products will limit their production to a maximum of \( 700 \) units for product \( A \) and \( 400 \) units for product \( B \) per day. If \( x \) and \( y \) are the number of units of product \( A \) and \( B \) produced per day respectively, choose the system of inequalities that describes the process. 1. \( 12,5 x + 10 y \leq 10000 ; 0.5 x + y \leq 600 ; x \leq 700 ; y \leq 400 ; x , y \geq 0 \) 

2. \( 12,5 x + 10 y \geq 10000 ; 0.5 x + y \leq 600 ; x \leq 700 ; y \leq 400 ; x , y \geq 0 \) 

3. \( 12,5 x + 10 y \leq 10000 ; 0.5 x + y \leq 600 ; x \geq 700 ; y \geq 400 ; x , y \geq 0 \) 

4. \( 12,5 x + 10 y \leq 10000 ; 0.5 x + y \geq 600 ; x \geq 700 ; y \leq 400 ; x , y \geq 0\) 

Answer

1

Solution
View full explanation on CameraMath App.