girl-logo

Hacer preguntas

Pregunta

West Ball

08/19/2024 · High School

a Find the equation of the tangent to the curve \(y = x^ 3 + 2x^ 2 - 3x + 4\)  at the point where the curve crosses the y-axis..

b Find the coordinates of the point where the tangent meets the curve again

Responder
expertRespuesta verificada por expertos

Hodges Malone
Experienced Tutor
5.0 (27votos)

(a) The equation of the tangent to the curve at the point where it crosses the y-axis is \(y = - 3x + 4\).

 

(b) The coordinates of the point where the tangent meets the curve again are \(( - 2, 10) \).

Solución

UpStudy Free Solution:

 

Let's solve the problem step by step.

 

(a) Find the equation of the tangent to the curve \(y = x^ 3 + 2x^ 2 - 3x + 4\) at the point where the curve crosses the y-axis.

 

1. Find the point where the curve crosses the y-axis:

 

The curve crosses the y-axis where \(x = 0\).

Substituting \(x = 0\) into the equation of the curve:

\[y = 0^ 3 + 2( 0) ^ 2 - 3( 0) + 4 = 4\]

So, the point is \(( 0, 4) \).

 

2. Find the derivative of the curve to get the slope of the tangent:

 

The derivative of \(y = x^ 3 + 2x^ 2 - 3x + 4\) is:

\[\frac { dy} { dx} = 3x^ 2 + 4x - 3\]

 

3. Evaluate the derivative at \(x = 0\) to find the slope of the tangent:

 

\[\left . \frac { dy} { dx} \right | _ { x= 0} = 3( 0) ^ 2 + 4( 0) - 3 = - 3\]

 

So, the slope of the tangent at \(( 0, 4) \) is \(- 3\).

 

4. Use the point-slope form of the equation of a line to find the equation of the tangent:

 

The point-slope form is \(y - y_ 1 = m( x - x_ 1) \), where \(m\) is the slope and \(( x_ 1, y_ 1) \) is the point.

Substituting \(m = - 3\) and \(( x_ 1, y_ 1) = ( 0, 4) \):

\[y - 4 = - 3( x - 0) \]

Simplifying:

\[y = - 3x + 4\]

 

So, the equation of the tangent is \(y = - 3x + 4\).

 

(b) Find the coordinates of the point where the tangent meets the curve again.

 

1. Set the equation of the curve equal to the equation of the tangent:

 

\[x^ 3 + 2x^ 2 - 3x + 4 = - 3x + 4\]

 

2. Simplify the equation:

 

\[x^ 3 + 2x^ 2 - 3x + 4 + 3x - 4 = 0\]

\[x^ 3 + 2x^ 2 = 0\]

 

3. Factor the equation:

 

\[x^ 2( x + 2) = 0\]

 

So, \(x^ 2 = 0\) or \(x + 2 = 0\).

 

This gives us \(x = 0\) or \(x = - 2\).

 

4. Find the corresponding \(y\)-coordinates:

 

For \(x = 0\), we already know \(y = 4\).

 

For \(x = - 2\):

\[y = ( - 2) ^ 3 + 2( - 2) ^ 2 - 3( - 2) + 4\]

\[y = - 8 + 8 + 6 + 4\]

\[y = 10\]

 

So, the coordinates of the point where the tangent meets the curve again are \(( - 2, 10) \).

 

Summary

 

(a) The equation of the tangent to the curve at the point where it crosses the y-axis is \(y = - 3x + 4\).

 

(b) The coordinates of the point where the tangent meets the curve again are \(( - 2, 10) \).

 

Supplemental Knowledge

 

Understanding how to find the equation of a tangent line to a curve at a given point is a fundamental concept in calculus. This involves several steps:

 

1. Finding the Point of Tangency:

- Identify the point on the curve where you need to find the tangent. This often involves substituting specific values into the function.

 

2. Calculating the Derivative:

- The derivative of a function gives us the slope of the tangent line at any point on the curve. For a function \(y = f( x) \), its derivative \(\frac { dy} { dx} \) or \(f' ( x) \) represents this slope.

 

3. Evaluating the Derivative at the Point of Tangency:

- Substitute the x-coordinate of your point into the derivative to find the slope at that specific point.

 

4. Using Point-Slope Form for Line Equation:

- With the slope and coordinates of your point, use the point-slope form \(y - y_ 1 = m( x - x_ 1) \), where \(m\) is your slope and \(( x_ 1, y_ 1) \) is your point, to write out your tangent line equation.

 

5. Finding Intersection Points:

- To find where this tangent intersects with its original curve again, set their equations equal and solve for x-coordinates, then substitute back to find corresponding y-coordinates.

 

Mastering calculus concepts can greatly enhance your problem-solving capabilities! UpStudy can offer more in-depth explanations or assistance for challenging calculus problems with precise solutions and detailed step-by-step explanations across many subjects at all levels - everything from differentiation or exam prep. Our professional tutors are online 24/7 offering personalized assistance tailored just to you - elevating academic journey with UpStudy where every question finds an answer!

¿Todavía tienes preguntas?
Pregunte a UpStudy en línea

  • Experto 24/7 tutores en vivo

  • Ilimitadonúmeros de preguntas

  • Paso a pasoexplicaciones

📸 EL ESTUDIO PUEDE SER UNA VERDADERA LUCHA
Por qué no UpStudy It?
Seleccione su plan a continuación
Prima

Puedes disfrutar

  • Paso a paso explicaciones
  • Experto 24/7 tutores en vivo
  • Ilimitado número de preguntas
  • Sin interrupciones
  • Acceso completo para responder y
    solución
Básico
  • Limitado Soluciones