2.) A general equation for a cubic function \( g ( x ) \) is given along with the function's graph. Write a specific equation by identifying the values of the parameters from the reference points shown on the graph. \( g ( x ) = a ( \frac{1}{b} x - h)^3+ k\) .
A. \(g ( x ) = ( 1 / 2 x + 3 ) ^ { \wedge } 3 - 1 \)
B. \( g ( x ) = 2 ( x - 3 ) ^ { \wedge } 3 + 1 \)
C. \( g ( x ) = 2 ( x + 3 ) ^ { \wedge } 3 + 1 \)
D. \( g ( x ) = ( 1 / 2 x - 3 ) ^ { \wedge } 3 - 1\)