Still have math questions?

Ask our expert tutors
Trigonometry
Question

Proof: We are given that \( m \angle AEB = 45 ^ { ...

Proof: We are given that \( m \angle AEB = 45 ^ { \circ } \) and \( \angle AEC \) is a right angle. The measure of \( \angle AEC \) is \( 90 ^ { \circ } \) by the definition of a right angle. Applying the 

\( + m \angle B E C = m \angle A E C \) . Applying the substitution property gives \( 45 ^ { \circ } + m \angle B E C = 90 ^ { \circ } \) . The subtraction property can be used to find \( m \angle B E C = 45 ^ { \circ } \) , so 

\( \angle B E C \cong \angle A E B \) because they have the same measure. Since \( \vec { E B } \) divides \( \angle A E C \) into two congruent angles, it is the angle bisector. 

Answer

Complementary Angles

Solution
View full explanation on CameraMath App.