Given: \( \overline { A P } \cong \overline { D P } , \) \( P \) is the midpoint of \( \overline { C B }\)
Prove: \( \overline { A B } \cong \overline { D C }\)
Given: \( \overline { A P } \cong \overline { D P } , \) \( P \) is the midpoint of \( \overline { C B }\)
Prove: \( \overline { A B } \cong \overline { D C }\)
AP=DP
BP=CP
\(\angle APB= \angle DPC\)
\(\triangle ABP\cong \triangle DCP\)
\(AB= DC\)