Still have math questions?

Ask our expert tutors
Algebra
Question

The temperature difference \( T \) between the inn...

The temperature difference \( T \) between the inner and outer walls of a pipe carrying cooling water to a large transmitting tube is modeled by: \( T = 38.61 \ln ( D / 5 ) \) degrees where \( D \) is the pipe's outside diameter in inches. Develop the model formula you would use to calculate the rate of change of temperature with respect to the change in diameter dT/dD? 

Answer

\(\frac { d } { d D } ( 38.61 \log ( \frac { D } { 5 } ) ) \)   

Factor out constants: 

\( = 38.61 ( \frac { d } { d D } ( \log ( \frac { D } { 5 } ) ) ) \) 

Using the chain rule, \( \frac { d } { d D } ( \log ( \frac { D } { 5 } ) ) = \) 

\( \frac { d \log ( u ) } { d u } \frac { d u } { d D } , \) where \( u = \frac { D } { 5 } \) and 

\( \frac { d } { d u } ( \log ( u ) ) = \frac { 1 } { u } : \) 

\( = 38.61 \cdot \frac { 5 ( \frac { d } { d D } ( \frac { D } { 5 } ) ) } { D } \) 

Simplify the expression: 

\( 193.05 ( \frac { d } { d D } ( \frac { D } { 5 } ) ) \) /D

Factor out constants: 

\( = \frac { 1 } { 5 } ( \frac { d } { d D } ( D ) ) \frac { 193.05 } { D } \) 

Simplify the expression: 

\( = \frac { 38.61 ( \frac { d } { d D } ( D ) ) } { D } \) 

The derivative of \( D \) is \( 1 \) : 

\( = 1 \frac { 38.61 } { D } \) 

Simplify the expression: 

\( = \frac { 38.61 } { D }\) 

Solution
View full explanation on CameraMath App.