Still have math questions?

Ask our expert tutors
Algebra
Question

Suppose \(\vec { u } = 3 \vec { i } + 4 \vec { j }...

Suppose \(\vec { u } = 3 \vec { i } + 4 \vec { j } , \vec { v } = 3 \vec { i } - 7 \vec { j }\) and \(\vec { w } = - 4 \vec { i } + 5 \vec { j }\) . Express each of the expressions in standard form: - \(2 \vec { u } + 3 \vec { v } - \vec { w }\) 

\(| \vec { u } | \vec { u } + | \vec { v } | \vec { v }\) 

\(| \vec { u } | | \vec { v } | \vec { w }\) 

\(\frac { 1 } { 3 } ( \vec { w } + \vec { u } ) - 4 \vec { v }\) 

Answer

 

\(2u+ 2v- w = 19i- 18j\)

\(|u|u+ |v|v= 37.83i- 33.27j\)

 

\(|u||v|w= - 152.2i+ 190.25j\)

 

\(\frac{1}{3}\left(w+ u\right)- 4v= 31j- i\frac{37}{3}\)

Solution
View full explanation on CameraMath App.