Still have math questions?

Ask our expert tutors
Algebra
Question

In 1545, a method of solving a cubic equation of t...

In 1545, a method of solving a cubic equation of the form 

\( x ^ { 3 } + m x = n \) 

developed by Niccolo Tartaglia, was published in the Ars Magna, a work by Girolamo Cardano. The formula for finding the one real solution of the equation is 

\( x \equiv \sqrt[ 3 ] { \frac { n } { 2 } + \sqrt { ( \frac { n } { 2 } ) ^ { 2 } + ( \frac { m } { 3 } ) ^ { 3 } } } - \sqrt[ 3 ] { \frac { - n } { 2 } + \sqrt { ( \frac { n } { 2 } ) ^ { 2 } + ( \frac { m } { 3 } ) ^ { 3 } } }\) 

121. \( x ^ { 3 } + 9 x = 26\) 

Answer

x = 2 is the only real solution 

Solution
View full explanation on CameraMath App.