If \( v = m ^ { ( 6 - \frac { n } { r } ) } , \) express \( n \) in terms of \( r , m \) and \( v \) by taking logarithms to base \( 10 . \)
\( n = \frac { r } { \log m } ( 6 - \log v ) \)
\( n = r \log m ( \log v - 6 \log m ) \)
\( n = r ( 6 - \frac { \log v } { \log m } ) \)
\( n = \frac { 1 } { m } ( 6 m r - r v )\)