Still have math questions?

Ask our expert tutors
Algebra
Question

20 Containers \( A \) and \( B \) had an equal amo...

20 Containers \( A \) and \( B \) had an equal amount of water at first. After \( 25.5 l \) of water from Container \( A \) and \( 44.5 \ell \) of water from Container B were used, container \( A \) had \( 5 \) times as much water as Container B. How much water was in Container \( B \) at first? 

Answer

\(x - 25.5 = 5 ( x - 44.5 ) : x = \frac { 197 } { 4 } ( \) Decimal: \( x = 49.25 ) \) 

\( x - 25.5 = 5 ( x - 44.5 ) \) 

Expand \( 5 ( x - 44.5 ) : 5 x - 222.5 \) 

\( x - 25.5 = 5 x - 222.5\) Add \( 25.5 \) to both sides 

\( x - 25.5 + 25.5 = 5 x - 222.5 + 25.5 \) 

Simplify 

\( x = 5 x - 197 \) 

Subtract \( 5 x \) from both sides 

\( x - 5 x = 5 x - 197 - 5 x \) 

Simplify 

\( - 4 x = - 197\) Divide both sides by \( - 4 \) 

\( \frac { - 4 x } { - 4 } = \frac { - 197 } { - 4 } \) 

Simplify 

\( x = \frac { 197 } { 4 }\) 

At first container B has 49.25 liters of water 

Steps 

Solution
View full explanation on CameraMath App.