(1. A slot machine has \( 3 \) dials. Each dial has \( 40 \) positions, two of which are "Jackpot." To win the jackpot, all three dials must be in the "Jackpot" position. Assuming each play spins the dials and stops each independently and randomly, what are the odds of one play winning the jackpot?

(A) \( \frac { 1 } { 40 } \times \frac { 1 } { 40 } \times \frac { 1 } { 40 } = \frac { 1 } { 64000 } = 0.0000156 = 0.00156 \% \)

(B)\(\frac { 1} { 3} \times \frac { 1} { 3} \times \frac { 1} { 3} = \frac { 1} { 27} = 0.037= 3.7\% \)

(C) \( \frac { 1 } { 20 } \times \frac { 1 } { 20 } \times \frac { 1 } { 20 } = \frac { 1 } { 8000 } = 0.000125 = 0.0125 \% \)

(D) \( \frac { 3 } { 40 } \times \frac { 3 } { 40 } \times \frac { 3 } { 40 } = \frac { 9 } { 64000 } = 0.00014 = 0.014 \% \)