¿Todavía tienes preguntas de matemáticas?

Pregunte a nuestros tutores expertos
Algebra
Pregunta

A particle moves in a straight line so that its po...

A particle moves in a straight line so that its position at time \( t \) is \( s ( t ) = t ^ { 3 } - 12 t + 3 \) ,  where \( t \) is measured in seconds and \( s \) is measured in meters.  a) Find the velocity function \( v ( t ) \) .  b) When is the particle moving forward and when is it moving backward?  d) Find the acceleration function \( a ( t ) \) .  e) When is the particle speeding up? When is it slowing down? 

Answer

a) \(v(t)=3t^2-12\)

b) forward: \(v(t)>0\Rightarrow t>2\)

backward: \(v(t)<0\Rightarrow 0<t<2\)

c) \(d=|s(3)-s(0)|=9\)

d) \(a(t)=v'(t)=6t\)

e) \(t>0\Rightarrow a(t)>0\Rightarrow\)always speeding up

Solución
View full explanation on CameraMath App.