A hiker travels \( 6 mph \) , which is \( \frac { 3 } { 11 } \) the rate of a cyclist. Suppose the cyclist is following behind the hiker. How fast does the distance between them decrease?
Pregunta
Answer
11/3 mph
Related Questions
Q:
If \( y = f ( g ( h ( x ) ) ) , \) then the derivative \( y ^ { \prime } \) is given by which for
a) \( f ^ { \prime } ( g ( h ( x ) ) \)
b) \( f ^ { \prime } ( g ( h ( x ) ) h ^ { \prime } ( x ) \)
c) None of these
d) \( f ^ { \prime } ( g ( h ( x ) ) g ^ { \prime } ( h ( x ) ) \)
e) \( f ^ { \prime } ( g ( h ( x ) ) g ^ { \prime } ( h ( x ) ) h ^ { \prime } ( x )\)
Q:
Determine the following limits. If infinite, specify \( \infty \) or \( - \infty \) . If an answer does not exist, explain why. (NO POINTS WILL BE GIVEN IF A TABLE OF VALUES IS USED) b. \( \lim _ { x \rightarrow 1 ^ { + } } [ \frac { x } { x - 1 } + \frac { 1 } { \ln ( x ) } ]\)