¿Todavía tienes preguntas de matemáticas?

Pregunte a nuestros tutores expertos
Algebra
Pregunta

A function \( f ( x ) \) is said to have a remova...

 A function \( f ( x ) \) is said to have a removable discontinuity at \( x = a \). if both of the following conditions hold: 

1. \( f \) is either not defined or not continuous at \( x = a \) . 

2. \( f ( a ) \) could either be defined or redefined so that the new function is continuous at \( x = a \) . 

show that 

has a removable discontinuity at x=-6y by

(a) verifying \( ( 1 ) \) in the definition above, and then 

(b) verifying \( ( 2 ) \) in the definition above by determining a value of \( f ( - 6 ) \) that would make \( f \) continuous at \( x = - 6 . \) 

\( f ( - 6 ) = \) ? would make \( f \) continuous at \( x = - 6\) 

Now draw a graph of \( f ( x ) \) . It's just a couple of parabolas! 

Answer

Solución
View full explanation on CameraMath App.