A company's revenue from selling \( x \) units of an item is given as \( R = 2000 x - 2 x ^ { 2 } \) . If sales are increasing at the rate of \( 40 \) units per day, how rapidly is revenue increasing (in dollars per day) when \( 230 \) units have been sold?
Pregunta
Answer
43200
Related Questions
Q:
If \( y = f ( g ( h ( x ) ) ) , \) then the derivative \( y ^ { \prime } \) is given by which for
a) \( f ^ { \prime } ( g ( h ( x ) ) \)
b) \( f ^ { \prime } ( g ( h ( x ) ) h ^ { \prime } ( x ) \)
c) None of these
d) \( f ^ { \prime } ( g ( h ( x ) ) g ^ { \prime } ( h ( x ) ) \)
e) \( f ^ { \prime } ( g ( h ( x ) ) g ^ { \prime } ( h ( x ) ) h ^ { \prime } ( x )\)
Q:
Determine the following limits. If infinite, specify \( \infty \) or \( - \infty \) . If an answer does not exist, explain why. (NO POINTS WILL BE GIVEN IF A TABLE OF VALUES IS USED) b. \( \lim _ { x \rightarrow 1 ^ { + } } [ \frac { x } { x - 1 } + \frac { 1 } { \ln ( x ) } ]\)