¿Todavía tienes preguntas de matemáticas?

Pregunte a nuestros tutores expertos
Algebra
Pregunta

A chicken farm orders bags of feed from two stores...

A chicken farm orders bags of feed from two stores. Store \( X \) charges \( \$ 20 \) per bag, and store \( Y \) charges \( \$ 15 \) per bag. Th farm must obtain at least \( 60 \) bags per week to care for the chickens properly. Store \( Y \) can provide a maximum of \( 40 \) bag per week, and the farm has committed to buy at least as many bags from store \( X \) as from store \( Y \) . The chicken farm wants to minimize the cost of ordering feed. Let \( x \) represent the number of bags of feed from store \( X \) and \( y \) represent the number of bags of feed from store \( Y \) . What are the constraints for the problem? 

\( 20 x + 15 y \geq 60 \) 

\( x \geq y \) 

\( y \leq 40 \) 

\( x \geq 0 \) 

\( y \geq 0\) 

Answer

X+Y\(\ge\)60

X\(\ge\)Y

Y\(\le\)40

Y\(\ge\)0

X\(> 0\)

Solución
View full explanation on CameraMath App.