¿Todavía tienes preguntas de matemáticas?

Pregunte a nuestros tutores expertos
Algebra
Pregunta

1. Let a function \( g \) be defined by \(g ( x ) ...

1. Let a function \( g \) be defined by 

\(g ( x ) = \left\{ \begin{array} { c l } { x - 2 \sin ( x ) } & { , x \leq 0 } \\ { 1 } & { , x > 0 } \end{array} \right.\)

a) Determine whether \( g \) is continuous at \( x = 0 \) . Justify your answer. 

b) For \( x \leq 0 , \) approximate the root of \( g \) using the Newton's method (in three decimal digits) with \( x _ { 0 } = - 2 \) . 

Answer

a). \(g(x- 0)= 0\)

\(g(x+ 0)= 1\)

It is  not continuous at x=0.

 

Solución
View full explanation on CameraMath App.