1. Let a function \( g \) be defined by
\(g ( x ) = \left\{ \begin{array} { c l } { x - 2 \sin ( x ) } & { , x \leq 0 } \\ { 1 } & { , x > 0 } \end{array} \right.\)
a) Determine whether \( g \) is continuous at \( x = 0 \) . Justify your answer.
b) For \( x \leq 0 , \) approximate the root of \( g \) using the Newton's method (in three decimal digits) with \( x _ { 0 } = - 2 \) .